Maximum Likelihood Estimation of the Parameters of a Bivariate Gaussian-Weibull Distribution from Machine Stress-rated Data


Book Description

Two important wood properties are stiffness (modulus of elasticity, MOE) and bending strength (modulus of rupture, MOR). In the past, MOE has often been modeled as a Gaussian and MOR as a lognormal or a two- or three parameter Weibull. It is well known that MOE and MOR are positively correlated. To model the simultaneous behavior of MOE and MOR for the purposes of wood system reliability calculations, a 2012 paper by Verrill, Evans, Kretschmann, and Hatfield introduced a bivariate Gaussian--Weibull distribution and the associated pseudo-truncated Weibull. In that paper, they obtained an asymptotically efficient estimator of the parameter vector of the bivariate Gaussian--Weibull. This estimator requires data from the full bivariate MOE, MOR distribution. In practice, such data are often not available. Instead, in some cases "Machine Stress-Rated" (MSR) data are available. An MSR data set consists of MOE, MOR pairs, where a pair is accepted into the data set (a piece of lumber is accepted) if and only if the MOE value lies between predetermined lower and upper bounds. For such a data set, the asymptotically efficient methods appropriate for a full data set cannot be used. In this paper we present an approach that is effective for MSR data.




Research Paper FPL-RP


Book Description




Reliability Engineering


Book Description

Over the last 50 years, the theory and the methods of reliability analysis have developed significantly. Therefore, it is very important to the reliability specialist to be informed of each reliability measure. This book will provide historical developments, current advancements, applications, numerous examples, and many case studies to bring the reader up-to-date with the advancements in this area. It covers reliability engineering in different branches, includes applications to reliability engineering practice, provides numerous examples to illustrate the theoretical results, and offers case studies along with real-world examples. This book is useful to engineering students, research scientist, and practitioners working in the field of reliability.




Reliability Engineering


Book Description

Without proper reliability and maintenance planning, even the most efficient and seemingly cost-effective designs can incur enormous expenses due to repeated or catastrophic failure and subsequent search for the cause. Today’s engineering students face increasing pressure from employers, customers, and regulators to produce cost-efficient designs that are less prone to failure and that are safe and easy to use. The second edition of Reliability Engineering aims to provide an understanding of reliability principles and maintenance planning to help accomplish these goals. This edition expands the treatment of several topics while maintaining an integrated introductory resource for the study of reliability evaluation and maintenance planning. The focus across all of the topics treated is the use of analytical methods to support the design of dependable and efficient equipment and the planning for the servicing of that equipment. The argument is made that probability models provide an effective vehicle for portraying and evaluating the variability that is inherent in the performance and longevity of equipment. With a blend of mathematical rigor and readability, this book is the ideal introductory textbook for graduate students and a useful resource for practising engineers.




Reliability


Book Description

Bringing together business and engineering to reliability analysisWith manufactured products exploding in numbers and complexity,reliability studies play an increasingly critical role throughout aproduct's entire life cycle-from design to post-sale support.Reliability: Modeling, Prediction, and Optimization presents aremarkably broad framework for the analysis of the technical andcommercial aspects of product reliability, integrating concepts andmethodologies from such diverse areas as engineering, materialsscience, statistics, probability, operations research, andmanagement. Written in plain language by two highly respectedexperts in the field, this practical work provides engineers,operations managers, and applied statisticians with bothqualitative and quantitative tools for solving a variety ofcomplex, real-world reliability problems. A wealth of examples andcase studies accompanies: * Comprehensive coverage of assessment, prediction, and improvementat each stage of a product's life cycle * Clear explanations of modeling and analysis for hardware rangingfrom a single part to whole systems * Thorough coverage of test design and statistical analysis ofreliability data * A special chapter on software reliability * Coverage of effective management of reliability, product support,testing, pricing, and related topics * Lists of sources for technical information, data, and computerprograms * Hundreds of graphs, charts, and tables, as well as over 500references * PowerPoint slides are available from the Wiley editorialdepartment.




Wood Science


Book Description







Scientific and Technical Aerospace Reports


Book Description

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.




Index to IEEE Publications


Book Description

Issues for 1973- cover the entire IEEE technical literature.




Recent Books