Measurements and Modelling of Evapotranspiration to Assess Agricultural Water Productivity in Basins with Changing Land Use Patterns


Book Description

The São Francisco River basin in Brazil is marked by socio-economic disparities and environrnental vulnerabilities. Water managers in the semi-arid region of the basin are faced with several challenges, such as competition among different water user groups, local over-exploitation of aquifers, c1imateand land use changes, non-source pollution, erosion, and sedimentation. Water policy makers have to work out strategies for integrated water management, which rely on a proper knowledge base of the physical conditions encountered in the basin. The intensification of horticulture in the semi-arid north-eastem region of Brazil replaces natural vegetation (i.e. caatinga) by irrigated fruit crops. A proper knowledge of the water balance from these different agro-ecosystems is an essential pre-requisite for sound water resources planning in the basin context. Because of the importance of agricultural water management practices on basin hydrology, daily and seasonal actualK.nowledge of spatially variable actual evapotranspiration can help to optimize the necessary reduction in irrigation supplies.evapotranspiration were measured in irrigated crops, along with experimental data collection over caatinga. Advanced radiation andenergy balance measurements were conducted using the Bowen ratio and eddy correlation energy balance methods. Remote sensing algorithms are potentially suitable for the extrapolation of these local fluxes on a regional scale, and the opportunities of these tools were investigated. The key crop water parameters identified from this data set inc1uded actual evapotranspiration, actual transpiration, actual soil evaporation, evaporative fractions, aerodynamic resistances, surface resistances, crop coefficients, percolation fluxes and water productivity. The energy balance measurements on the irrigated fields revealed high evaporative fractions, which pointed out that soils are very wet and that large majority of the net available energy is converted into latent heat fluxoThe average crop water consumption in wine grape were found to be 478 mm per growing season, while table grapes show 373 mm per growing season. The seasonal accumulated values for mango orchardswere typical1y 1419 mm. On average the caatinga natural ecosystem evapotranspirated only 533 mm yr-I. The irrigation induced an incremental evapotranspiration of 2.2 mm d-I or 8,030 m3 ha-I yr-I. The water balances revealed that systematic over-irrigation is a common practice and that a continuous deep percolation flux occurs. The detailed results allowed expressing water consumption into specific bio-physical parameters, rather than only into more generic crop coefficients that lump together several individual crop water parameters. The stomata o irrigated crops seem to respond very tight1y to atmospheric vapour pressure deficit while natural vegetation responds to the rainfall regime. The field results have been used further to calibrate and validate an existing remote sensing algorithm for the estimation of spatially distributed energy balance fluxes: the Surface Energy Balance AIgoritlun for Land (SEBAL). It was shown that it is required to apply the hot and cold pixel calibration for every individual image. A generic solution for the internal calibration of the sensible heat flux through the linear relationship between surface radiation temperature and vertical air temperature differences adjacent to the land surface could not be found. For daily scale, the values of the instantaneous evaporative fraction needed to be adjusted. The difference between field measurements and SEBAL was 4.4 % and 0.6% for natural vegetation and irrigated mango orchard, respectively, for annual scale. Further to the estimate of depleted water volumes in irrigated horticulture, it was investigated whether the incremental evapotranspiration values are productive. After calibration, the SEBAL algorithm was applied to determine regional scale evapotranspiration and biomass production. The remote sensing tools shows spatial variation of crop water productivity values and detects regions and farms where water can be saved. The net water withdrawal in the Low-Middle São Francisco River basin was also estimated. The biophysical water productivity based on actual evapotranspiration appeared to be around 0.90 L m-3,2.80 kg m-3and 3.4 kg m-3for respectively wine grapes, table grapes, and mangos. The economic water productivities indicated that irrigated fruit crops have around 20 times more value per unit water consumed than irrigated arable crops. The area with fruit crops in the semi-arid region of the Low-Middle São Francisco River basin are expanding mainly with vineyards and mango orchards. The crop water consumption is high due to overirrigation together with high thermal availability. The water is, however, productively used and creates a boost for the rural economy. The drawback is that agricultural drainage can adversely affect the water quality, and this requires a lower irrigation supply in the near-future. K.nowledge of spatially variable actual evapotranspiration can help to optimize the necessary reduction in irrigation supplies.




Evapotranspiration


Book Description

This edition of Evapotranspiration - Remote Sensing and Modeling contains 23 chapters related to the modeling and simulation of evapotranspiration (ET) and remote sensing-based energy balance determination of ET. These areas are at the forefront of technologies that quantify the highly spatial ET from the Earth's surface. The topics describe mechanics of ET simulation from partially vegetated surfaces and stomatal conductance behavior of natural and agricultural ecosystems. Estimation methods that use weather based methods, soil water balance, the Complementary Relationship, the Hargreaves and other temperature-radiation based methods, and Fuzzy-Probabilistic calculations are described. A critical review describes methods used in hydrological models. Applications describe ET patterns in alpine catchments, under water shortage, for irrigated systems, under climate change, and for grasslands and pastures. Remote sensing based approaches include Landsat and MODIS satellite-based energy balance, and the common process models SEBAL, METRIC and S-SEBS. Recommended guidelines for applying operational satellite-based energy balance models and for overcoming common challenges are made.




Evapotranspiration Over Heterogeneous Vegetated Surfaces


Book Description

The focus of this work is the development of models to estimate evapotranspiration (ET), investigating the partitioning between soil evaporation and plant transpiration at field and regional scales, and calculating ET over heterogeneous vegetated surfaces. Different algorithms with varying complexities as well as spatial and temporal resolutions are developed to estimate evapotranspiration from different data inputs. The author proposes a novel approach to estimate ET from remote sensing by exploiting the linkage between water and carbon cycles. At the field scale, a hybrid dual source model (H-D model) is proposed. It is verified with field observations over four different ecosystems and coupled with a soil water and heat transfer model, to simulate water and heat transfer in the soil-plant-atmosphere continuum. At the regional scale, a hybrid dual source scheme and trapezoid framework based ET model (HTEM), using remote sensing images is developed. This model is verified with data from the USA and China and the impact of agricultural water-saving on ET of different land use types is analyzed, in these chapters. The author discusses the potential of using a remote sensing ET model in the real management of water resources in a large irrigation district. This work would be of particular interest to any hydrologist or micro-meteorologist who works on ET estimation and it will also appeal to the ecologist who works on the coupled water and carbon cycles. Land evapotranspiration is an important research topic in hydrology, meteorology, ecology and agricultural sciences. Dr. Yuting Yang works at the CSIRO Land and Water, Canberra, Australia.




Evapotranspiration


Book Description

Evapotranspiration - An Overview contains recent advances in the physics of evaporation and transpiration from a typical experimental site to large scale areas. It incorporates many years of authors experience with the latest research on the methods and the models used worldwide, engaging advanced technology and modern instrumentation. The reader benefits from the in-depth analysis and the diverse sites and settings, where the models, applications and methods are tested. Weather conditions, soil moisture, geology, climatic systems are examined for their role and influence on the theoretical and actual water demand by the atmosphere in the earth's ecosystem. This book not only provides students and scientists with the information to improve the procedures for estimating evapotranspiration, but will also help them to manage and evaluate the observed data.




Remote Sensing of Evapotranspiration (ET)


Book Description

Evapotranspiration (ET) is a critical component of the water and energy balances, and the number of remote sensing-based ET products and estimation methods has increased in recent years. Various aspects of remote sensing of ET are reported in the 11 papers published in this book. The major research areas covered by this book include inter-comparison and performance evaluation of widely used one- and two-source energy balance models, a new dual-source model (Soil Plant Atmosphere and Remote Sensing Evapotranspiration, SPARSE), and a process-based model (ETMonitor); assessment of multi-source (e.g., remote sensing, reanalysis, and land surface model) ET products; development or improvement of data fusion frameworks to predict continuous daily ET at a high spatial resolution (field-scale or 30 m) by fusing the advanced spaceborne thermal emission reflectance radiometer (ASTER), the moderate resolution imaging spectroradiometer (MODIS), and Landsat data; and investigating uncertainties in ET estimates using an ET ensemble composed of several land surface models and diagnostic datasets. The effects of the differences between ET products on water resources and ecosystem management were also investigated. More accurate ET estimates and improved understanding of remotely sensed ET products are crucial for maximizing crop productivity while minimizing water losses and management costs.




Evapotranspiration


Book Description

This book covers topics on the basic models, assessments, and techniques to calculate evapotranspiration (ET) for practical applications in agriculture, forestry, and urban science. This simple and thorough guide provides the information and techniques necessary to develop, manage, interpret, and apply evapotranspiration ET data to practical applic




Yield gap analysis of field crops


Book Description

To feed a world population that will exceed 9 billion by 2050 requires an estimated 60% increase over current primary agricultural productivity. Closing the common and often large gap between actual and attainable crop yield is critical to achieve this goal. To close yield gaps in both small and large scale cropping systems worldwide we need (1) definitions and techniques to measure and model yield at different levels (actual, attainable, potential) and different scales in space (field, farm, region, global) and time (short and long term); (2) identification of the causes of gaps between yield levels; (3) management options to reduce the gaps where feasible and (4) policies to favour adoption of sustainable gap-closing solutions. The aim of this publication is to critically review the methods for yield gap analysis, hence addressing primarily the first of these four requirements, reporting a wide-ranging and well-referenced analysis of literature on current methods to assess productivity of crops and cropping systems.




Comparing Estimates of Actual Evapotranspiration from Satellites, Hydrological Models, and Field Data


Book Description

An overview of an experiment in which 8 different methods of estimating actual evaporation and transpiration were compared using a common database. Methods based on field data, hydrological models, and satellite data were used and the objectives were to compare results and to assess the utility of each method for various applications.




Evapotranspiration


Book Description

Evapotranspiration is a very complex phenomenon, comprising different aspects and processes (hydrological, meteorological, physiological, soil, plant and others). Farmers, agriculture advisers, extension services, hydrologists, agrometeorologists, water management specialists and many others are facing the problem of evapotranspiration. This book is dedicated to further understanding of the evapotranspiration problems, presenting a broad body of experience, by reporting different views of the authors and the results of their studies. It covers aspects from understandings and concepts of evapotranspiration, through methodology of calculating and measuring, to applications in different fields, in which evapotranspiration is an important factor. The book will be of benefit to scientists, engineers and managers involved in problems related to meteorology, climatology, hydrology, geography, agronomy and agricultural water management. We hope they will find useful material in this collection of papers.