Polymer Gels


Book Description

This volume contains a series of papers originally presented at the Symposium on Polymer Gels organized and sponsored by the Research Group on Polymer Gels,The Society of Polymer Science of Japan and co-sponsored by the Science and Technology Agency (ST A) and MIT!, Japan. The Symposium took place at Tsukuba Science City on 18th and 19th September, 1989. Recognized experts in their fields were invited to speak and there was a strong attendance from government, academic and industrial research centers. The purpose of the Symposium was to review the state of the art and to present and discuss recent progress in the understanding of the behavioral properties of polymer gels and their application to biomedical, environmental and robotic fields. Most of the papers and related discussions concentrated on the swelling behavior of hydrogels and chemomechanical systems, both artificial and naturally occurring, in which external stimuli of a physical or chemical nature control energy transformation or signal transduction. The recent great interest in chemomechanical systems based on polymer gels has stimulated considerable effort towards the development of new sensors and actuators, controllable membrane separation processes, and delivery systems in which the functions of sensing, processing and actuation are all built into the polymeric network device. Artificial chemomechanical systems, through the use of environmentally sensitive polymer gels, are emerging as interesting materials for mimicking basic processes previously only confined to the biological world, and commercially viable applications are also foreseen in the not-too-distant future.




Energy Conversion


Book Description

This handbook surveys the range of methods and fuel types used in generating energy for industry, transportation, and heating and cooling of buildings. Solar, wind, biomass, nuclear, geothermal, ocean and fossil fuels are discussed and compared, and the thermodynamics of energy conversion is explained. Appendices are provided with fully updated data. Thoroughly revised, this second edition surveys the latest advances in energy conversion from a wide variety of currently available energy sources. It describes energy sources such as fossil fuels, biomass (including refuse-derived biomass fuels), nuclear, solar radiation, wind, geothermal, and ocean, then provides the terminology and units used for each energy resource and their equivalence. It includes an overview of the steam power cycles, gas turbines, internal combustion engines, hydraulic turbines, Stirling engines, advanced fossil fuel power systems, and combined-cycle power plants. It outlines the development, current use, and future of nuclear power.







Mechanical Energy Conversion


Book Description

This book studies the principles of mechanical energy conversion used in renewable energy sources derived from air and water: wind power, tidal power, hydroelectric power, osmotic energy, ocean thermal energy and wave energy. Mechanical Energy Conversion presents twelve application exercises and their answers. They enable the reader to first understand the physical principles of mechanical energy converters and then learn the method for sizing them. The book also reinforces the concepts of fluid mechanics and hydraulic turbo machinery, which are required to solve the exercises. This book aims to instruct readers on how to design an energy system. For each renewable energy source covered – and based on the quantity of energy or power supplied – it describes the production process, explains how it works and calculates the characteristics and dimensions of its components.




Ocean Wave Energy Conversion


Book Description

This volume will prove of vital interest to those studying the use of renewable resources. Scientists, engineers, and inventors will find it a valuable review of ocean wave mechanics as well as an introduction to wave energy conversion. It presents physical and mathematical descriptions of the nine generic wave energy conversion techniques, along with their uses and performance characteristics. Author Michael E. McCormick is the Corbin A. McNeill Professor of Naval Engineering at the U.S. Naval Academy. In addition to his timely and significant coverage of possible environmental effects associated with wave energy conversion, he provides a separate treatment of several electro-mechanical energy conversion techniques. Many worked examples throughout the book will be particularly useful to readers with a limited mathematical background. Those interested in research and development will benefit from the extensive bibliography.




Energy Conversion Engineering


Book Description

Discover the fundamentals and tools needed to model, design, and build efficient, clean low-carbon energy systems with this unique textbook.




Direct Energy Conversion


Book Description

Direct Energy Conversion discusses both the physics behind energy conversion processes and a wide variety of energy conversion devices. A direct energy conversion process converts one form of energy to another through a single process. The first half of this book surveys multiple devices that convert to or from electricity including piezoelectric devices, antennas, solar cells, light emitting diodes, lasers, thermoelectric devices, and batteries. In these chapters, physical effects are discussed, terminology used by engineers in the discipline is introduced, and insights into material selection is studied. The second part of this book puts concepts of energy conversion in a more abstract framework. These chapters introduce the idea of calculus of variations and illuminate relationships between energy conversion processes.This peer-reviewed book is used for a junior level electrical engineering class at Trine University. However, it is intended not just for electrical engineers. Direct energy conversion is a fascinating topic because it does not fit neatly into a single discipline. This book also should be of interest to physicists, chemists, mechanical engineers, and other researchers interested in an introduction to the energy conversion devices studied by scientists and engineers in other disciplines.




Renewable energy conversion systems


Book Description

Fundamentals of Renewable Energy Systems goes beyond theoretical aspects of advances in renewable energy and addresses future trends. By focusing on the design of developing technologies, relevant operation and detailed background and an understanding of the application of power electronics and thermodynamics processes in renewable energy, this book provides an analysis of advancing energy systems. The book will be of interest to engineering graduates, researchers, professors and industry professionals involved in the renewable energy sector and is ideal for advanced engineering courses dealing with renewable energy, sources, thermal and electrical energy production and sustainability. With increasing focus on developing low carbon energy production, audiences need to have the engineering knowledge and practical skills to develop and implement creative solutions to engineering problems encountered with renewable energy technologies. By looking at renewable energy capture and conversion, system design and analysis, project development and implementation, each modular chapter examines recent advances in specific renewable energy systems with detailed methods, calculations and worked examples. - Includes recent techniques used to design and model different renewable energy sources (RES) - Demonstrates how to use power electronics in renewable systems - Discusses how to identify, design, integrate and operate the most suitable technologies through key problems




Fueling Our Future: An Introduction to Sustainable Energy


Book Description

Overview of energy demand for students, policymakers, and readers without scientific backgrounds.




Thermodynamics and Energy Conversion


Book Description

This textbook gives a thorough treatment of engineering thermodynamics with applications to classical and modern energy conversion devices. Some emphasis lies on the description of irreversible processes, such as friction, heat transfer and mixing and the evaluation of the related work losses. Better use of resources requires high efficiencies therefore the reduction of irreversible losses should be seen as one of the main goals of a thermal engineer. This book provides the necessary tools. Topics include: car and aircraft engines, including Otto, Diesel and Atkinson cycles, by-pass turbofan engines, ramjet and scramjet; steam and gas power plants, including advanced regenerative systems, solar tower and compressed air energy storage; mixing and separation, including reverse osmosis, osmotic power plants and carbon sequestration; phase equilibrium and chemical equilibrium, distillation, chemical reactors, combustion processes and fuel cells; the microscopic definition of entropy. The book includes about 300 end-of-chapter problems for homework assignments and exams. The material presented suffices for two or three full-term courses on thermodynamics and energy conversion.