Polymers at Cryogenic Temperatures


Book Description

Kalia and Fu's novel monograph covers cryogenic treatment, properties and applications of cryo-treated polymer materials. Written by numerous international experts, the twelve chapters in this book offer the reader a comprehensive picture of the latest findings and developments, as well as an outlook on the field. Cryogenic technology has seen remarkable progress in the past few years and especially cryogenic properties of polymers are attracting attention through new breakthroughs in space, superconducting, magnetic and electronic techniques. This book is a valuable resource for researchers, educators, engineers and graduate students in the field and at technical institutions.




Mechanical Properties of Solid Polymers


Book Description

A concise, self-contained introduction to solid polymers, the mechanics of their behavior and molecular and structural interpretations. This updated edition provides extended coverage of recent developments in rubber elasticity, relaxation transitions, non-linear viscoelastic behavior, anisotropic mechanical behavior, yield behavior of polymers, breaking phenomena, and other fields.




Recent Developments in Durability Analysis of Composite Systems


Book Description

The papers from these proceedings address experimental and analytical methods for the characterization and analysis of modern composite and adhesive systems. They have been produced to provide understanding that can be used to design safe, reliable engineering components.




Nonmetallic Materials and Composites at Low Temperature


Book Description

This, the second special topical conference on the properties of Non-Metallic Materials at Low Temperatures, was sponsored by the International Cryogenic Materials Conference Board. The potential for plastics materials in the field of cryogenics is vast and as yet only partly explored. In addition, many other materials, which qualify for the title non-metallic but are not 'plastics', have numerous possible outlets in low temperature technology. This conference aimed at providing a forum, whereby specialists from Industry, the Universities and from Government sponsored Institutions could assemble to discuss the extent of our current knowledge. As it transpired, the meeting was also to high light the considerable gaps that still exist in our fundamental understanding of the low temperature behaviour of these materials. On this theme, during the course of the conference, a reference was made to an almost forgotten quotation by Lord Kelvin, who said: "When you cannot measure what you are speaking about, when you cannot express in numbers, your knowledge is of a meagre and unsatisfactory kind; it may be the beginning of knowledge, but you have scarcely in your thoughts advanced to the stage of a science, whatever the matter be." This simple statement sums up the aims, objectives and hopefully the achievements of this conference. To discuss and disseminate the current knowledge on non-metallic materials in order that realistic predictions of in-service performance may be made.




Composite Materials


Book Description

Composite materials have been well developed to meet the challenges of high-performing material properties targeting engineering and structural applications. The ability of composite materials to absorb stresses and dissipate strain energy is vastly superior to that of other materials such as polymers and ceramics, and thus they offer engineers many mechanical, thermal, chemical and damage-tolerance advantages with limited drawbacks such as brittleness. Composite Materials: Manufacturing, Properties and Applications presents a comprehensive review of current status and future directions, latest technologies and innovative work, challenges and opportunities for composite materials. The chapters present latest advances and comprehensive coverage of material types, design, fabrication, modelling, properties and applications from conventional composite materials to advanced composites such as nanocomposites, self-healing and smart composites. The book targets researchers in the field of advanced composite materials and ceramics, students of materials science and engineering at the postgraduate level, as well as material engineers and scientists working in industrial R& D sectors for composite material manufacturing. - Comprehensive coverage of material types, design, fabrication, modelling, properties and applications from conventional composite materials to advanced composites such as nanocomposites, self-healing and smart composites - Features latest advances in terms of mechanical properties and other material parameters which are essential for designers and engineers in the composite and composite reinforcement manufacturing industry, as well as all those with an academic research interest in the subject - Offers a good platform for end users to refer to the latest technologies and topics fitting into specific applications and specific methods to tackle manufacturing or material processing issues in relation to different types of composite materials




Cement-based Composites: Materials, Mechanical Properties and Performance


Book Description

This book considers the properties and behaviour of cement-based materials from the point of view of composite science and technology. It deals particularly with newer forms of cement-based materials and also with a composite approach to conventional materials and their special properties. Emphasis is put on non-conventional reinforcement and desig




Durability of Composites for Civil Structural Applications


Book Description

Given the increasing use of fibre-reinforced polymer (FRP) composites in structural civil engineering, there is a vital need for critical information related to the overall durability and performance of these new materials under harsh and changing conditions. Durability of composites for civil and structural applications provides a thorough overview of key aspects of the durability of FRP composites for designers and practising engineers.Part one discusses general aspects of composite durability. Chapters examine mechanisms of degradation such as moisture, aqueous solutions, UV radiation, temperature, fatigue and wear. Part two then discusses ways of using FRP composites, including strengthening and rehabilitating existing structures with FRP composites, and monitoring techniques such as structural health monitoring.Durability of composites for civil and structural applications provides practising engineers, decision makers and students with a useful and fundamental guide to the use of FRP composites within civil and structural engineering. - Provides a thorough overview of key aspects of the durability of composites - Examines mechanisms of degradation such as aqueous solutions, moisture, fatigue and wear - Discusses ways of using FRP composites, including strengthening and rehabilitating existing structures




Fibrous Polymeric Composites


Book Description

This book emphasizes the scientific origin of deformation and damage of FRP composites under various environmental effects and analyses present understanding on degradation mechanisms, role of interfaces and addition of nanofillers Discusses micro-characterization of composites and interfaces, also includes micro-mechanisms and microscopic evidences to establish the structure-property correlation Elucidates advantages and limitations of FRP composites in supercritical applications




Defects and Damage in Composite Materials and Structures


Book Description

The advantages of composite materials include a high specific strength and stiffness, formability, and a comparative resistance to fatigue cracking and corrosion. However, not forsaking these advantages, composite materials are prone to a wide range of defects and damage that can significantly reduce the residual strength and stiffness of a structure or result in unfavorable load paths. Emphasizing defect identification and restitution, Defects and Damage in Composite Materials and Structures explains how defects and damage in composite materials and structures impact composite component performance. Providing ready access to an extensive, descriptive list of defects and damage types, this must-have reference: Examines defect criticality in composite structures Recommends repair actions to restore structural integrity Discusses failure modes and mechanisms of composites due to defects Reviews NDI processes for finding and identifying defects in composite materials Relating defect detection methods to defect type, the author merges his experience in the field of in-service activities for composite airframe maintenance and repair with indispensable reports and articles on defects and damage in advanced composite materials from the last 50 years.