Mechanical Science


Book Description

This book gives comprehensive coverage of mechanical science for HNC/HND students taking mechanical engineering courses, including all topics likely to be covered in both years of such courses, as well as for first year undergraduate courses in mechanical engineering. It features 500 problems with answers and 200 worked examples. The third edition includes a new section on power transmission and an appendix on mathematics to help students with the basic notation of calculus and solution of differential equations.




Mechanical Engineer's Reference Book


Book Description

Mechanical Engineer's Reference Book, 12th Edition is a 19-chapter text that covers the basic principles of mechanical engineering. The first chapters discuss the principles of mechanical engineering, electrical and electronics, microprocessors, instrumentation, and control. The succeeding chapters deal with the applications of computers and computer-integrated engineering systems; the design standards; and materials' properties and selection. Considerable chapters are devoted to other basic knowledge in mechanical engineering, including solid mechanics, tribology, power units and transmission, fuels and combustion, and alternative energy sources. The remaining chapters explore other engineering fields related to mechanical engineering, including nuclear, offshore, and plant engineering. These chapters also cover the topics of manufacturing methods, engineering mathematics, health and safety, and units of measurements. This book will be of great value to mechanical engineers.




Newnes Mechanical Engineer's Pocket Book


Book Description

Newnes Mechanical Engineer's Pocket Book is an easy to use pocket book intended to aid mechanical engineers engaged in design and manufacture and others who require a quick, day-to-day reference for useful workshop information. The book is a compilation of useful data, providing abstracts of many technical materials in various technical areas. The text is divided into five main parts: Engineering Mathematics and Science, Engineering Design Data, Engineering Materials, Computer Aided Engineering, and Cutting Tools. These main sections are further subdivided into topic areas that discuss such topics as engineering mathematics, power transmission and fasteners, mechanical properties, and polymeric materials. Mechanical engineers and those into mechanical design and shop work will find the book very useful.




The Science and Engineering of Mechanical Shock


Book Description

This book fills a unique position in the literature as a dedicated mechanical shock analysis book. Because shock events can be extremely damaging, mechanical shock is an important topic for engineers to understand. This book provides the reader with the tools needed to quantitatively describe shock environments and their damage potential on aerospace, civil, naval and mechanical systems. The authors include the relevant history of how shock testing and analysis came to its current state and a discussion of the different types of shock environments typically experienced by systems. Development of single-degree-of-freedom theory and the theory of the shock response spectra are covered, consistent with treatment of shock spectra theory in the literature. What is unique is the expansion to other types of spectra including less common types of shock spectra and energy spectra methods using fundamental principles of structural dynamics. In addition, non-spectral methods are discussed with their applications. Non-spectral methods are almost completely absent from the current books on mechanical shock. Multi-degree-of-freedom shock spectra and multi-degree-of-freedom testing are discussed and the theory is developed. Addressing an emerging field for laboratory shock testing, the authors bring together information currently available only in journals and conference publications. The volume is ideal for engineers, structural designers, and structural materials fabricators needing a foundation to practically analyze shock environments and understand their role in structural design.




Mechanistic Data Science for STEM Education and Applications


Book Description

This book introduces Mechanistic Data Science (MDS) as a structured methodology for combining data science tools with mathematical scientific principles (i.e., “mechanistic” principles) to solve intractable problems. Traditional data science methodologies require copious quantities of data to show a reliable pattern, but the amount of required data can be greatly reduced by considering the mathematical science principles. MDS is presented here in six easy-to-follow modules: 1) Multimodal data generation and collection, 2) extraction of mechanistic features, 3) knowledge-driven dimension reduction, 4) reduced order surrogate models, 5) deep learning for regression and classification, and 6) system and design. These data science and mechanistic analysis steps are presented in an intuitive manner that emphasizes practical concepts for solving engineering problems as well as real-life problems. This book is written in a spectral style and is ideal as an entry level textbook for engineering and data science undergraduate and graduate students, practicing scientists and engineers, as well as STEM (Science, Technology, Engineering, Mathematics) high school students and teachers.




Materials Selection and Applications in Mechanical Engineering


Book Description

Unlike any other text of its kind, Materials Selection and Applications in Mechanical Engineering contains complete and in-depth coverage on materials of use, their principles, processing and handling details; along with illustrative examples and sample projects. It clearly depicts the needed topics and gives adequate coverage with ample examples so that ME students can appreciate the relevance of materials to their discipline. Featuring the basic principles of materials selection for application in various engineering outcomes, the contents of this text follow those of the common first-level introductory course in materials science and engineering. Directed toward mechanical engineering, it introduces the materials commonly used in this branch, along with an exhaustive description of their properties that decide their functional characteristics and selection for use, typical problems encountered during application due to improper processing or handling of materials, non-destructive test procedures used in maintenance to detect and correct problems, and much more. What's more, numerous examples and project-type analyses to select proper materials for application are provided. With the use of this unique text, teaching a relevant second-level course in materials to ME majors has never been easier Covers all aspects of engineering materials necessary for their successful utilization in mechanical components and systems. Defines a procedure to evaluate the materials' performance efficiency in engineering applications and illustrates it with a number of examples. Includes sample project activities, along with a number of assignments for self exercise. Keeps chapters short and targeted toward specific topics for easy assimilation. Contains several unique chapters, including microprocessing, MEMS, problems encountered during use of materials in mechanical components, and NDT procedures used to detect common defects such as cracks, porosity and gas pockets, internal residual stresses, etc. Features commonly used formulae in mechanical system components in an appendix. Several tables containing material properties are included throughout the book.







Benchmarking the Competitiveness of the United States in Mechanical Engineering Basic Research


Book Description

Mechanical engineering is critical to the design, manufacture, and operation of small and large mechanical systems throughout the U.S. economy. This book highlights the main findings of a benchmarking exercise to rate the standing of U.S. mechanical engineering basic research relative to other regions or countries. The book includes key factors that influence U.S. performance in mechanical engineering research, and near- and longer-term projections of research leadership. U.S. leadership in mechanical engineering basic research overall will continue to be strong. Contributions of U.S. mechanical engineers to journal articles will increase, but so will the contributions from other growing economies such as China and India. At the same time, the supply of U.S. mechanical engineers is in jeopardy, because of declines in the number of U.S. citizens obtaining advanced degrees and uncertain prospects for continuing to attract foreign students. U.S. funding of mechanical engineering basic research and infrastructure will remain level, with strong leadership in emerging areas.




Mechanism Analysis


Book Description

This updated and enlarged Second Edition provides in-depth, progressive studies of kinematic mechanisms and offers novel, simplified methods of solving typical problems that arise in mechanisms synthesis and analysis - concentrating on the use of algebra and trigonometry and minimizing the need for calculus.;It continues to furnish complete coverag




Mechanics and Control Engineering III


Book Description

Selected, peer reviewed papers from the 2014 3rd International Conference on Mechanics and Control Engineering (ICMCE 2014), October 26-28, 2014, Asheville, North Carolina, USA