Power Electronic Packaging


Book Description

Power Electronic Packaging presents an in-depth overview of power electronic packaging design, assembly,reliability and modeling. Since there is a drastic difference between IC fabrication and power electronic packaging, the book systematically introduces typical power electronic packaging design, assembly, reliability and failure analysis and material selection so readers can clearly understand each task's unique characteristics. Power electronic packaging is one of the fastest growing segments in the power electronic industry, due to the rapid growth of power integrated circuit (IC) fabrication, especially for applications like portable, consumer, home, computing and automotive electronics. This book also covers how advances in both semiconductor content and power advanced package design have helped cause advances in power device capability in recent years. The author extrapolates the most recent trends in the book's areas of focus to highlight where further improvement in materials and techniques can drive continued advancements, particularly in thermal management, usability, efficiency, reliability and overall cost of power semiconductor solutions.




Electronic Packaging


Book Description

Here is the ultimate electronic packaging resource, in which luminaries from the four intertwined disciplines of packaging present a one-stop guide to the state of the art. An absolute necessity for anyone working in the field, this "how-to" reference covers all the newest technologies, including BGA, Flip Chip, and CSP.




Handbook of Electronic Package Design


Book Description

Both a handbook for practitioners and a text for use in teaching electronic packaging concepts, guidelines, and techniques. The treatment begins with an overview of the electronics design process and proceeds to examine the levels of electronic packaging and the fundamental issues in the development







Modeling, Analysis, Design, and Tests for Electronics Packaging beyond Moore


Book Description

Modeling, Analysis, Design and Testing for Electronics Packaging Beyond Moore provides an overview of electrical, thermal and thermomechanical modeling, analysis, design and testing for 2.5D/3D. The book addresses important topics, including electrically and thermally induced issues, such as EMI and thermal issues, which are crucial to package signal and thermal integrity. It also covers modeling methods to address thermomechanical stress related to the package structural integrity. In addition, practical design and test techniques for packages and systems are included. - Includes advanced modeling and analysis methods and techniques for state-of-the art electronics packaging - Features experimental characterization and qualifications for the analysis and verification of electronic packaging design - Provides multiphysics modeling and analysis techniques of electronic packaging




The Electronic Packaging Handbook


Book Description

The packaging of electronic devices and systems represents a significant challenge for product designers and managers. Performance, efficiency, cost considerations, dealing with the newer IC packaging technologies, and EMI/RFI issues all come into play. Thermal considerations at both the device and the systems level are also necessary. The Electronic Packaging Handbook, a new volume in the Electrical Engineering Handbook Series, provides essential factual information on the design, manufacturing, and testing of electronic devices and systems. Co-published with the IEEE, this is an ideal resource for engineers and technicians involved in any aspect of design, production, testing or packaging of electronic products, regardless of whether they are commercial or industrial in nature. Topics addressed include design automation, new IC packaging technologies, materials, testing, and safety. Electronics packaging continues to include expanding and evolving topics and technologies, as the demand for smaller, faster, and lighter products continues without signs of abatement. These demands mean that individuals in each of the specialty areas involved in electronics packaging-such as electronic, mechanical, and thermal designers, and manufacturing and test engineers-are all interdependent on each others knowledge. The Electronic Packaging Handbook elucidates these specialty areas and helps individuals broaden their knowledge base in this ever-growing field.




Handbook of Electronic Package Design


Book Description

Both a handbook for practitioners and a text for use in teaching electronic packaging concepts, guidelines, and techniques. The treatment begins with an overview of the electronics design process and proceeds to examine the levels of electronic packaging and the fundamental issues in the development




Electronic Packaging and Interconnection Handbook


Book Description

Charles A. Harper's 2nd edition on designing and manufacturing all the major types of electronic systems is now double the size of the 1st edition. It draws upon the expertise of a dozen experts to make sense of this highly interdisciplinary field




Electronic Packaging Materials and Their Properties


Book Description

Packaging materials strongly affect the effectiveness of an electronic packaging system regarding reliability, design, and cost. In electronic systems, packaging materials may serve as electrical conductors or insulators, create structure and form, provide thermal paths, and protect the circuits from environmental factors, such as moisture, contamination, hostile chemicals, and radiation. Electronic Packaging Materials and Their Properties examines the array of packaging architecture, outlining the classification of materials and their use for various tasks requiring performance over time. Applications discussed include: interconnections printed circuit boards substrates encapsulants dielectrics die attach materials electrical contacts thermal materials solders Electronic Packaging Materials and Their Properties also reviews key electrical, thermal, thermomechanical, mechanical, chemical, and miscellaneous properties as well as their significance in electronic packaging.




Advanced Materials for Thermal Management of Electronic Packaging


Book Description

The need for advanced thermal management materials in electronic packaging has been widely recognized as thermal challenges become barriers to the electronic industry’s ability to provide continued improvements in device and system performance. With increased performance requirements for smaller, more capable, and more efficient electronic power devices, systems ranging from active electronically scanned radar arrays to web servers all require components that can dissipate heat efficiently. This requires that the materials have high capability of dissipating heat and maintaining compatibility with the die and electronic packaging. In response to critical needs, there have been revolutionary advances in thermal management materials and technologies for active and passive cooling that promise integrable and cost-effective thermal management solutions. This book meets the need for a comprehensive approach to advanced thermal management in electronic packaging, with coverage of the fundamentals of heat transfer, component design guidelines, materials selection and assessment, air, liquid, and thermoelectric cooling, characterization techniques and methodology, processing and manufacturing technology, balance between cost and performance, and application niches. The final chapter presents a roadmap and future perspective on developments in advanced thermal management materials for electronic packaging.