Mechanisms of Memory


Book Description

This fully revised second edition provides the only unified synthesis of available information concerning the mechanisms of higher-order memory formation. It spans the range from learning theory, to human and animal behavioral learning models, to cellular physiology and biochemistry. It is unique in its incorporation of chapters on memory disorders, tying in these clinically important syndromes with the basic science of synaptic plasticity and memory mechanisms. It also covers cutting-edge approaches such as the use of genetically engineered animals in studies of memory and memory diseases. Written in an engaging and easily readable style and extensively illustrated with many new, full-color figures to help explain key concepts, this book demystifies the complexities of memory and deepens the reader's understanding. - More than 25% new content, particularly expanding the scope to include new findings in translational research. - Unique in its depth of coverage of molecular and cellular mechanisms - Extensive cross-referencing to Comprehensive Learning and Memory - Discusses clinically relevant memory disorders in the context of modern molecular research and includes numerous practical examples




Mechanisms of Memory


Book Description

This book stands as the first unified overview of the cellular and molecular mechanisms underlying higher-order learning and memory. It integrates modern discoveries concerning learning and memory disorders such as mental retardation syndromes and Alzheimer's Disease, while also emphasizing the results gained from the cutting-edge research methodologies of genetic engineering, complex behavioral characterization, proteomics, and molecular biology. This book provides a foundation of experimental design that will be useful to all students pursuing an interest in laboratory research. This book is an enlightening and invaluable resource for anyone concerned with memory mechanisms.* Presents a unified view of memory mechanisms from behavior to genes and drawing examples from many different brain regions, types of learning, and various animal model systems* Includes numerous practical examples for the new investigator on how to implement research program in the area of learning and memory* Provides a balanced treatment of the strengths and weaknesses in modern experimental design




Mechanisms of Memory


Book Description

'Sweatt has done a superb and scholarly job of telling the story of this field.' - Howard Eichenbaum, Editor in Chief Hippocampus, Boston University 'It is definitely worth publishing a second edition. David is a leader in the field. the book is well written and has lots of nice figures making it easy to teach from.' - Daniel Johnston, Director, Center for Learning and Memory; Director, Institute for Neuroscience, University of Texas at Austin Sweatt is an outstanding writer and conveyer of complex concepts. He engages readers with lots of examples and detailed explanations for the most diffic




Discovering the Brain


Book Description

The brain ... There is no other part of the human anatomy that is so intriguing. How does it develop and function and why does it sometimes, tragically, degenerate? The answers are complex. In Discovering the Brain, science writer Sandra Ackerman cuts through the complexity to bring this vital topic to the public. The 1990s were declared the "Decade of the Brain" by former President Bush, and the neuroscience community responded with a host of new investigations and conferences. Discovering the Brain is based on the Institute of Medicine conference, Decade of the Brain: Frontiers in Neuroscience and Brain Research. Discovering the Brain is a "field guide" to the brainâ€"an easy-to-read discussion of the brain's physical structure and where functions such as language and music appreciation lie. Ackerman examines: How electrical and chemical signals are conveyed in the brain. The mechanisms by which we see, hear, think, and pay attentionâ€"and how a "gut feeling" actually originates in the brain. Learning and memory retention, including parallels to computer memory and what they might tell us about our own mental capacity. Development of the brain throughout the life span, with a look at the aging brain. Ackerman provides an enlightening chapter on the connection between the brain's physical condition and various mental disorders and notes what progress can realistically be made toward the prevention and treatment of stroke and other ailments. Finally, she explores the potential for major advances during the "Decade of the Brain," with a look at medical imaging techniquesâ€"what various technologies can and cannot tell usâ€"and how the public and private sectors can contribute to continued advances in neuroscience. This highly readable volume will provide the public and policymakersâ€"and many scientists as wellâ€"with a helpful guide to understanding the many discoveries that are sure to be announced throughout the "Decade of the Brain."




Neural Plasticity and Memory


Book Description

A comprehensive, multidisciplinary review, Neural Plasticity and Memory: From Genes to Brain Imaging provides an in-depth, up-to-date analysis of the study of the neurobiology of memory. Leading specialists share their scientific experience in the field, covering a wide range of topics where molecular, genetic, behavioral, and brain imaging techniq




Mechanisms of Sensory Working Memory


Book Description

Mechanisms of Sensory Working Memory: Attention and Performance XXV provides an update on research surrounding the memory processes that are crucial for many facets of cognitive processing and experience, with new coverage of emerging areas of study, including a new understanding of working memory for features of stimuli devoid of verbal, phonological, or long-term memory content, such as memory for simple visual features (e.g., texture or color), simple auditory features (e.g., pitch), or simple tactile features (e.g., vibration frequency), now called sensory memory to distinguish from verbal memory. This contemporary focus on sensory memory is just beginning, and this collection of original contributions provides a foundational reference for the study mechanisms of sensory memory. Students, scholars, and researchers studying memory mechanisms and processes in cognitive neuroscience, cognitive science, neuroscience, and psychology will find this book of great value to their work. - Introduces the study of sensory mechanisms of working memory as distinct from verbal memory - Covers visual memory, auditory memory, and tactile memory - Includes translational content as the breakdown of working memory is often associated with a disease, disorder, or trauma to the brain




Memory Mechanisms in Health and Disease


Book Description

Memory Mechanisms is an edited review volume that summarizes state-of-the-art knowledge on memory mechanisms at the molecular, cellular and circuit level. Each review is written by leading experts in the field, presenting not only current knowledge, but also discussing the concepts, providing critical reflections and suggesting an outlook for future studies. The memory mechanisms are also discussed in the context of diseases. Studies of memory deficits in disease models are introduced as well as approaches to restore memory deficits. Finally, the impact of contemporary memory research for psychiatry is illustrated.




Evolution of Learning and Memory Mechanisms


Book Description

This book examines how evolution influences learning and memory processes in both human and nonhuman animals.




How We Remember


Book Description

Episodic memory proves essential for daily function, allowing us to remember where we parked the car, what time we walked the dog, or what a friend said earlier. In this book, Hasselmo presents a new model describing the brain mechanisms for encoding and remembering an episode as a spatiotemporal trajectory.




Neuronal Mechanisms of Memory Formation


Book Description

Long-term potentiation (LTP) is by far the most dominant model for neuronal changes that might encode memory. LTP is an elegant concept that meets many criteria set up by theoreticians long before the model's discovery, and it also fits anatomical data of learning-dependent synapse changes. Since the discovery of LTP, the question has remained about how closely LTP produced in vitro by artificial stimulation of neurons actually models putative learning-induced synaptic changes. A number of recent investigations have tried to correlate synaptic changes observed after learning with changes produced by artificial stimulation of neurons. These studies have failed to find a correlation between the two forms of synaptic plasticity. In this book, an international group of neurobiologists and psychologists discuss their latest ideas and data. The results of experiments using electrophysiological techniques in vitro are discussed and compared with the results of in vivo experiments. Learning experiments are also discussed. Theoretical models such as the Hebb theory of synaptic changes during learning are compared to different models that do not predict upregulation of synaptic transmission. A wide approach is taken, and research and models in different brain areas such as the neocortex and the basal brain are discussed.