Registries for Evaluating Patient Outcomes


Book Description

This User’s Guide is intended to support the design, implementation, analysis, interpretation, and quality evaluation of registries created to increase understanding of patient outcomes. For the purposes of this guide, a patient registry is an organized system that uses observational study methods to collect uniform data (clinical and other) to evaluate specified outcomes for a population defined by a particular disease, condition, or exposure, and that serves one or more predetermined scientific, clinical, or policy purposes. A registry database is a file (or files) derived from the registry. Although registries can serve many purposes, this guide focuses on registries created for one or more of the following purposes: to describe the natural history of disease, to determine clinical effectiveness or cost-effectiveness of health care products and services, to measure or monitor safety and harm, and/or to measure quality of care. Registries are classified according to how their populations are defined. For example, product registries include patients who have been exposed to biopharmaceutical products or medical devices. Health services registries consist of patients who have had a common procedure, clinical encounter, or hospitalization. Disease or condition registries are defined by patients having the same diagnosis, such as cystic fibrosis or heart failure. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews.







Improving Diagnosis in Health Care


Book Description

Getting the right diagnosis is a key aspect of health care - it provides an explanation of a patient's health problem and informs subsequent health care decisions. The diagnostic process is a complex, collaborative activity that involves clinical reasoning and information gathering to determine a patient's health problem. According to Improving Diagnosis in Health Care, diagnostic errors-inaccurate or delayed diagnoses-persist throughout all settings of care and continue to harm an unacceptable number of patients. It is likely that most people will experience at least one diagnostic error in their lifetime, sometimes with devastating consequences. Diagnostic errors may cause harm to patients by preventing or delaying appropriate treatment, providing unnecessary or harmful treatment, or resulting in psychological or financial repercussions. The committee concluded that improving the diagnostic process is not only possible, but also represents a moral, professional, and public health imperative. Improving Diagnosis in Health Care, a continuation of the landmark Institute of Medicine reports To Err Is Human (2000) and Crossing the Quality Chasm (2001), finds that diagnosis-and, in particular, the occurrence of diagnostic errorsâ€"has been largely unappreciated in efforts to improve the quality and safety of health care. Without a dedicated focus on improving diagnosis, diagnostic errors will likely worsen as the delivery of health care and the diagnostic process continue to increase in complexity. Just as the diagnostic process is a collaborative activity, improving diagnosis will require collaboration and a widespread commitment to change among health care professionals, health care organizations, patients and their families, researchers, and policy makers. The recommendations of Improving Diagnosis in Health Care contribute to the growing momentum for change in this crucial area of health care quality and safety.




Modern Methods of Clinical Investigation


Book Description

The very rapid pace of advances in biomedical research promises us a wide range of new drugs, medical devices, and clinical procedures. The extent to which these discoveries will benefit the public, however, depends in large part on the methods we choose for developing and testing them. Modern Methods of Clinical Investigation focuses on strategies for clinical evaluation and their role in uncovering the actual benefits and risks of medical innovation. Essays explore differences in our current systems for evaluating drugs, medical devices, and clinical procedures; health insurance databases as a tool for assessing treatment outcomes; the role of the medical profession, the Food and Drug Administration, and industry in stimulating the use of evaluative methods; and more. This book will be of special interest to policymakers, regulators, executives in the medical industry, clinical researchers, and physicians.




WHO Global Model Regulatory Framework for Medical Devices Including in Vitro Diagnostic Medical Devices


Book Description

The Model recommends guiding principles and harmonized definitions and specifies the attributes of effective and efficient regulation to be embodied within binding and enforceable law. Its main elements refer to international harmonization guidance documents developed by the Global Harmonization Task Force (GHTF) and its successor, the International Medical Device Regulators Forum (IMDRF). The Model is particularly relevant for WHO Member States with little or no regulation for medical devices currently in place but with the ambition to improve this situation. It foresees that such countries will progress from basic regulatory controls towards an expanded level to the extent that their resources allow. The Model is written for the legislative, executive, and regulatory branches of government as they develop and establish a system of medical devices regulation. It describes the role and responsibilities of a country's regulatory authority for implementing and enforcing the regulations. Also, it describes circumstances in which a regulatory authority may either "rely on" or "recognize" the work products from trusted regulatory sources (such as scientific assessments, audit, and inspection reports) or from the WHO Prequalification Team. Section 2 of this document recommends definitions of the terms "medical devices" and IVDs. It describes how they may be grouped according to their potential for harm to the patient or user and specifies principles of safety and performance that the device manufacturer must adhere to. It explains how the manufacturer must demonstrate to a regulatory authority that its medical device has been designed and manufactured to be safe and to perform as intended during its lifetime. Section 3 presents the principles of good regulatory practice and enabling conditions for effectively regulating medical devices. It then introduces essential tools for regulation, explaining the function of the regulatory entity and the resources required. Section 4 presents a stepwise approach to implementing and enforcing regulatory controls for medical devices as the regulation progresses from a basic to an expanded level. It describes elements from which a country may choose according to national priorities and challenges. Also, it provides information on when the techniques of reliance and recognition may be considered and on the importance of international convergence of regulatory practice.Section 5 provides a list of additional topics to be considered when developing and implementing regulations for medical devices. It explains the relevance of these topics and provides guidance for regulatory authorities to ensure that they are addressed appropriately. The Model outlines a general approach but cannot provide country-specific guidance on implementation. While it does not offer detailed guidance on regulatory topics, it contains references to relevant documents where further information may be found. It does not detail the responsibilities of other stakeholders such as manufacturers, distributors, procurement agencies, and health-care professionals, all of whom have roles in assuring the quality, safety, and performance of medical devices.










Standards Survey


Book Description




An Overview of FDA Regulated Products


Book Description

Today's challenge, especially for many newcomers to the regulated industry, is not necessarily to gather regulatory information, but to know how to interpret and apply it. The ability to discern what is important from what is not, and to interpret regulatory documents correctly, provides a valuable competitive advantage to any newcomer or established professional in this field. An Overview of FDA Regulated Products: From Drugs and Medical Devices to Food and Tobacco provides a valuable summary of the key information to unveil the meaning of critical, and often complex, regulatory concepts. Concise and easy to read with practical explanations, key points, summaries and case studies, this book highlights the regulatory processes involved in bringing an FDA regulated product from research and development to approval and market. Although the primary focus will be on the US system, this book also features global perspectives where appropriate. A valuable resource for students, professors and professionals, An Overview of FDA Regulated Products illustrates the most important elements and concepts so that the reader can focus on the critical issues and make the necessary connections to be successful. - Provides an overview of key regulatory requirements using a practical approach that features detailed discussions of hypothetical and real-world case studies in order to highlight the concepts and applications of regulations - Covers all FDA regulated products, including drugs, biologics, medical devices, cosmetics, foods, dietary supplements, cosmetics, veterinary products, tobacco and more in one single reference - Illustrates complex topics in a clear, succinct and engaging manner by breaking down technical terms and offering straightforward and easy to understand explanations




Human resources for medical devices - the role of biomedical engineers


Book Description

This publication addresses the role of the biomedical engineer in the development, regulation, management, training, and use of medical devices. The first part of the book looks at the biomedical engineering profession globally as part of the health workforce: global numbers and statistics, professional classification, general education and training, professional associations, and the certification process. The second part addresses all of the different roles that the biomedical engineer can have in the life cycle of the technology, from research and development, and innovation, mainly undertaken in academia; the regulation of devices entering the market; and the assessment or evaluation in selecting and prioritizing medical devices (usually at national level); to the role they play in the management of devices from selection and procurement to safe use in healthcare facilities. The annexes present comprehensive information on academic programs, professional societies, and relevant WHO and UN documents related to human resources for health as well as the reclassification proposal for ILO. This publication can be used to encourage the availability, recognition, and increased participation of biomedical engineers as part of the health workforce, particularly following the recent adoption of the recommendations of the UN High-Level Commission on Health Employment and Economic Growth, the WHO Global Strategy on Human Resources for Health, and the establishment of national health workforce accounts. The document also supports the aim of reclassification of the role of the biomedical engineer as a specific engineer that supports the development, access, and use of medical devices within the national, regional, and global occupation classification system.