Medium and Heavy Duty Vehicle Field Evaluations (Presentation).


Book Description

This presentation discusses field evaluations of medium- and heavy-duty vehicles performed by NREL. The project provides medium-duty (MD) and heavy-duty (HD) test results, aggregated data, and detailed analysis, including 3rd party unbiased data (data that would not normally be shared by industry in an aggregated and detailed manner). Over 5.6 million miles of advanced technology MD and HD truck data have been collected, documented, and analyzed on over 240 different vehicles since 2002. Data, analysis, and reports are shared within DOE, national laboratory partners, and industry for R & D planning and strategy. The results help guide R & D for new technology development, help define intelligent usage of newly developed technology, and help fleets/users understand all aspects of advanced technology.







Medium- and Heavy-Duty Vehicle Field Evaluations


Book Description

This presentation provides information about NREL's real-world evaluations of commercial vehicle technologies, which compare the performance of advanced medium- and heavy-duty fleet vehicles to conventional vehicles. NREL conducts these customized evaluations in partnership with commercial and government fleets across the nation. Current fleet and industry partners include UPS, Workhorse, Parker Hannifin, Proterra, Foothill Transit, Long Beach Transit, BYD, Odyne, Duke Energy, Miami-Dade, TransPower, Eaton, Cummins, Bosch, and Clean Cities/National Clean Fleet Partnership. The presentation focuses on two particular vehicle evaluation projects -- hydraulic hybrid refuse haulers operated by Miami-Dade and electric transit buses operated by Foothill Transit.




Integrated Vehicle-Based Safety Systems Heavy-Truck Field Operational Test Independent Evaluation


Book Description

"This report presents the methodology and results of the independent evaluation of a prototype integrated crash warning system for light vehicles as part of the Integrated Vehicle-Based Safety Systems initiative of the United States Department of Transportation's Intelligent Transportation System program. The system integrates rear-end crash, curve-speed warning, lane change crash, and lane departure warning functions. The goals of the independed evaluation are to assess the safety impact, gauge driver acceptance, and characterize the capability of the integrated safety system. The evaluation is based on naturalistic driving data collected from a field operational test using 108 subjects who drove 16 passenger vehicles equipped with a prototype integrated safety system and a data acquisition system. The test subjects accumulated over 213,000 miles during a 12-month period throughout parts of southeast Michigan. For each driver, the test period was divided into a 12 day baseline condition with the system disabled and a 28 day treatment condition with the system enabled to compare the effect of the system on driving performance. The results of the analysis suggest that driving with the integrated safety system improves driver behavior and increases driver safety, that drivers feel that the system provides a safety benefit, and that the system alerts had a high degree of accuracy. This report delineates the methodology of the different analyses and discusses their results."--Technical report documentation page.




Control of Standalone Microgrid


Book Description

Control of Standalone Microgrid looks at a practical and systematic elaboration of the architecture, design and control of standalone microgrids. It is oriented towards more advanced readers who want to enhance their knowledge in the fields of power engineering, sustainable energy, microgrids and their control. With an enriched collection of topics pertaining to the architecture and control of standalone microgrids, this book presents recent research that will bring advancements in the current power system scenario, discussing operational and technical issues due to high penetration of distributed generation units. Including executable plans for standalone microgrid systems this book enables researchers and energy executives to understand the future of energy delivery systems as well as global case studies and models to apply control techniques for standalone microgrids and protection schemes which provide a deeper level of understanding. - Includes significant case studies and global case studies of control techniques and protection schemes - Provides a working guideline in the design, analysis and development of Standalone microgrid and its applications - Features detailed description of the types and components of standalone microgrids, modeling and simulation and performance analysis




Medium- and Heavy-Duty Vehicle Duty Cycles for Electric Powertrains


Book Description

NREL's Fleet Test and Evaluation group has extensive in-use vehicle data demonstrating the importance of understanding the vocational duty cycle for appropriate sizing of electric vehicle (EV) and power electronics components for medium- and heavy-duty EV applications. This presentation includes an overview of recent EV fleet evaluation projects that have valuable in-use data that can be leveraged for sub-system research, analysis, and validation. Peak power and power distribution data from in-field EVs are presented for four different vocations, including class 3 delivery vans, class 6 delivery trucks, class 8 transit buses, and class 8 port drayage trucks, demonstrating the impacts of duty cycle on performance requirements.




Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles


Book Description

Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles evaluates various technologies and methods that could improve the fuel economy of medium- and heavy-duty vehicles, such as tractor-trailers, transit buses, and work trucks. The book also recommends approaches that federal agencies could use to regulate these vehicles' fuel consumption. Currently there are no fuel consumption standards for such vehicles, which account for about 26 percent of the transportation fuel used in the U.S. The miles-per-gallon measure used to regulate the fuel economy of passenger cars. is not appropriate for medium- and heavy-duty vehicles, which are designed above all to carry loads efficiently. Instead, any regulation of medium- and heavy-duty vehicles should use a metric that reflects the efficiency with which a vehicle moves goods or passengers, such as gallons per ton-mile, a unit that reflects the amount of fuel a vehicle would use to carry a ton of goods one mile. This is called load-specific fuel consumption (LSFC). The book estimates the improvements that various technologies could achieve over the next decade in seven vehicle types. For example, using advanced diesel engines in tractor-trailers could lower their fuel consumption by up to 20 percent by 2020, and improved aerodynamics could yield an 11 percent reduction. Hybrid powertrains could lower the fuel consumption of vehicles that stop frequently, such as garbage trucks and transit buses, by as much 35 percent in the same time frame.




Medium- and Heavy-Duty Vehicle Duty Cycles for Electric Powertrains


Book Description

NREL's Fleet Test and Evaluation group has extensive in-use vehicle data demonstrating the importance of understanding the vocational duty cycle for appropriate sizing of electric vehicle (EV) and power electronics components for medium- and heavy-duty EV applications. This presentation includes an overview of recent EV fleet evaluation projects that have valuable in-use data that can be leveraged for sub-system research, analysis, and validation. Peak power and power distribution data from in-field EVs are presented for four different vocations, including class 3 delivery vans, class 6 delivery trucks, class 8 transit buses, and class 8 port drayage trucks, demonstrating the impacts of duty cycle on performance requirements.




Emissions from Medium-Duty Conventional and Diesel-Electric Hybrid Vehicles


Book Description

This presentation discusses the results of emissions testing for medium-duty conventional and diesel-electric hybrid vehicles. Testing was based on a field evaluation approach that utilized the Fleet DNA drive cycle database and NREL's Renewable Fuels and Lubricants (ReFUEL) Laboratory chassis dynamometer. Vehicles tested included parcel delivery (Class 6 step vans), beverage delivery (Class 8 tractors), and parcel delivery (Class 7 box trucks) vehicles, all with intended service class medium/heavy heavy-duty diesel (MHDD). Results for fuel economy and tailpipe NOx emissions included: diesel hybrid electric vehicles showed an average fuel economy advantage on identified test cycles: Class 6 Step Vans: 26 percent; Class 7 Box Trucks: 24.7Percent; Class 8 Tractors: 17.3 percent. Vehicle miles traveled is an important factor in determining total petroleum and CO2 displacement. Higher NOx emissions were observed over some test cycles: highly drive cycle dependent; engine-out differences may result from different engine operating point; and selective catalyst reduction temperature may play a role, but does not explain the whole story.