MEMS Product Development


Book Description

Drawing on their experiences in successfully executing hundreds of MEMS development projects, the authors present the first practical guide to navigating the technical and business challenges of MEMS product development, from the initial concept stage all the way to commercialization. The strategies and tactics presented, when practiced diligently, can shorten development timelines, help avoid common pitfalls, and improve the odds of success, especially when resources are limited. MEMS Product Development illuminates what it really takes to develop a novel MEMS product so that innovators, designers, entrepreneurs, product managers, investors, and executives may properly prepare their companies to succeed.




MEMS Reliability


Book Description

The successful launch of viable MEMs product hinges on MEMS reliability, the reliability and qualification for MEMs based products is not widely understood. Companies that have a deep understanding of MEMs reliability view the information as a competitive advantage and are reluctant to share it. MEMs Reliability, focuses on the reliability and manufacturability of MEMS at a fundamental level by addressing process development and characterization, material property characterization, failure mechanisms and physics of failure (POF), design strategies for improving yield, design for reliability (DFR), packaging and testing.




MEMS


Book Description

Does MEMS technology offer advantages to your company's products? Will miniature machines on a chip solve your application objectives for ôsmaller, better, cheaper, and faster'ö If you are a product development engineer or manager, the decision to design a MEMS device implies having an application and market. This book offers you a practical guide to making this important business decision. Here, both veterans and newcomers to MEMS device design will get advice on evaluating MEMS for their business, followed by guidance on selecting solutions, technologies and design support tools. You will see how experts from around the world have explored MEMS possibilities and achieved new breakthrough devices such as RF-MEMS for mobile telecommunications, micro-optics for internet hardware, catheter-based minimal-invasive operating theatre tools, and in vivo monitoring of exact dosage of medication in ailing patients. This handbook offers a wealth of analytical techniques treating problematic areas such as alternative designs reliability, packaging, and cost effectiveness.




MEMS Product Engineering


Book Description

This book provides the methodological background to directing cooperative product engineering projects in a micro and nanotechnology setting. The methodology is based on well-established methods like PRINCE2 and StageGate, which are supplemented by best practices that can be individually tailored to the actual nature and size of the project at hand. This book is intended for everyone who takes an active role in either practical product engineering or in teaching it. This includes project and product management staff and program management offices in companies working on innovation projects, those active in innovation, as well as professors and students in engineering and management.




Smart Material Systems and MEMS


Book Description

Presenting unified coverage of the design and modeling of smart micro- and macrosystems, this book addresses fabrication issues and outlines the challenges faced by engineers working with smart sensors in a variety of applications. Part I deals with the fundamental concepts of a typical smart system and its constituent components. Preliminary fabrication and characterization concepts are introduced before design principles are discussed in detail. Part III presents a comprehensive account of the modeling of smart systems, smart sensors and actuators. Part IV builds upon the fundamental concepts to analyze fabrication techniques for silicon-based MEMS in more detail. Practicing engineers will benefit from the detailed assessment of applications in communications technology, aerospace, biomedical and mechanical engineering. The book provides an essential reference or textbook for graduates following a course in smart sensors, actuators and systems.




Inertial MEMS


Book Description

A practical and systematic overview of the design, fabrication and test of MEMS-based inertial sensors, this comprehensive and rigorous guide shows you how to analyze and transform application requirements into practical designs, and helps you to avoid potential pitfalls and to cut design time. With this book you'll soon be up to speed on the relevant basics, including MEMS technologies, packaging, kinematics and mechanics, and transducers. You'll also get a thorough evaluation of different approaches and architectures for design and an overview of key aspects of testing and calibration. Unique insights into the practical difficulties of making sensors for real-world applications make this up-to-date description of the state of the art in inertial MEMS an ideal resource for professional engineers in industry as well as students looking for a complete introduction to the area.




MEMS and NEMS


Book Description

The development of micro- and nano-mechanical systems (MEMS and NEMS) foreshadows momentous changes not only in the technological world, but in virtually every aspect of human life. The future of the field is bright with opportunities, but also riddled with challenges, ranging from further theoretical development through advances in fabrication technologies, to developing high-performance nano- and microscale systems, devices, and structures, including transducers, switches, logic gates, actuators and sensors. MEMS and NEMS: Systems, Devices, and Structures is designed to help you meet those challenges and solve fundamental, experimental, and applied problems. Written from a multi-disciplinary perspective, this book forms the basis for the synthesis, modeling, analysis, simulation, control, prototyping, and fabrication of MEMS and NEMS. The author brings together the various paradigms, methods, and technologies associated with MEMS and NEMS to show how to synthesize, analyze, design, and fabricate them. Focusing on the basics, he illustrates the development of NEMS and MEMS architectures, physical representations, structural synthesis, and optimization. The applications of MEMS and NEMS in areas such as biotechnology, medicine, avionics, transportation, and defense are virtually limitless. This book helps prepare you to take advantage of their inherent opportunities and effectively solve problems related to their configurations, systems integration, and control.




MEMS and Microstructures in Aerospace Applications


Book Description

The promise of MEMS for aerospace applications has been germinating for years, and current advances bring the field to the very cusp of fruition. Reliability is chief among the challenges limiting the deployment of MEMS technologies in space, as the requirement of zero failure during the mission is quite stringent for this burgeoning field. MEMS and Microstructures in Aerospace Applications provides all the necessary tools to overcome these obstacles and take MEMS from the lab bench to beyond the exosphere. The book begins with an overview of MEMS development and provides several demonstrations of past and current examples of MEMS in space. From this platform, the discussion builds to fabrication technologies; the effect of space environmental factors on MEMS devices; and micro technologies for space systems, instrumentation, communications, thermal control, guidance navigation and control, and propulsion. Subsequent chapters explore factors common to all of the described systems, such as MEMS packaging, handling and contamination control, material selection for specific applications, reliability practices for design and application, and assurance practices. Edited and contributed by an outstanding team of leading experts from industry, academia, and national laboratories, MEMS and Microstructures in Aerospace Applications illuminates the path toward qualifying and integrating MEMS devices and instruments into future space missions and developing innovative satellite systems.




Mems/Nems


Book Description

This significant and uniquely comprehensive five-volume reference is a valuable source for research workers, practitioners, computer scientists, students, and technologists. It covers all of the major topics within the subject and offers a comprehensive treatment of MEMS design, fabrication techniques, and manufacturing methods. It also includes current medical applications of MEMS technology and provides applications of MEMS to opto-electronic devices. It is clearly written, self-contained, and accessible, with helpful standard features including an introduction, summary, extensive figures and design examples with comprehensive reference lists.




Micro Electro Mechanical System Design


Book Description

It is challenging at best to find a resource that provides the breadth of information necessary to develop a successful micro electro mechanical system (MEMS) design. Micro Electro Mechanical System Design is that resource. It is a comprehensive, single-source guide that explains the design process by illustrating the full range of issues involved,