Meshfree Approximation Methods with MATLAB


Book Description

Meshfree approximation methods are a relatively new area of research. This book provides the salient theoretical results needed for a basic understanding of meshfree approximation methods. It places emphasis on a hands-on approach that includes MATLAB routines for all basic operations.




Meshfree Approximation Methods With Matlab (With Cd-rom)


Book Description

Meshfree approximation methods are a relatively new area of research, and there are only a few books covering it at present. Whereas other works focus almost entirely on theoretical aspects or applications in the engineering field, this book provides the salient theoretical results needed for a basic understanding of meshfree approximation methods.The emphasis here is on a hands-on approach that includes MATLAB routines for all basic operations. Meshfree approximation methods, such as radial basis function and moving least squares method, are discussed from a scattered data approximation and partial differential equations point of view. A good balance is supplied between the necessary theory and implementation in terms of many MATLAB programs, with examples and applications to illustrate key points. Used as class notes for graduate courses at Northwestern University, Illinois Institute of Technology, and Vanderbilt University, this book will appeal to both mathematics and engineering graduate students.




Kernel-based Approximation Methods Using Matlab


Book Description

In an attempt to introduce application scientists and graduate students to the exciting topic of positive definite kernels and radial basis functions, this book presents modern theoretical results on kernel-based approximation methods and demonstrates their implementation in various settings. The authors explore the historical context of this fascinating topic and explain recent advances as strategies to address long-standing problems. Examples are drawn from fields as diverse as function approximation, spatial statistics, boundary value problems, machine learning, surrogate modeling and finance. Researchers from those and other fields can recreate the results within using the documented MATLAB code, also available through the online library. This combination of a strong theoretical foundation and accessible experimentation empowers readers to use positive definite kernels on their own problems of interest.




An Introduction to Meshfree Methods and Their Programming


Book Description

The finite difference method (FDM) hasbeen used tosolve differential equation systems for centuries. The FDM works well for problems of simple geometry and was widely used before the invention of the much more efficient, robust finite element method (FEM). FEM is now widely used in handling problems with complex geometry. Currently, we are using and developing even more powerful numerical techniques aiming to obtain more accurate approximate solutions in a more convenient manner for even more complex systems. The meshfree or meshless method is one such phenomenal development in the past decade, and is the subject of this book. There are many MFree methods proposed so far for different applications. Currently, three monographs on MFree methods have been published. Mesh Free Methods, Moving Beyond the Finite Element Method d by GR Liu (2002) provides a systematic discussion on basic theories, fundamentals for MFree methods, especially on MFree weak-form methods. It provides a comprehensive record of well-known MFree methods and the wide coverage of applications of MFree methods to problems of solids mechanics (solids, beams, plates, shells, etc.) as well as fluid mechanics. The Meshless Local Petrov-Galerkin (MLPG) Method d by Atluri and Shen (2002) provides detailed discussions of the meshfree local Petrov-Galerkin (MLPG) method and itsvariations. Formulations and applications of MLPG are well addressed in their book.







Scattered Data Approximation


Book Description

Many practical applications require the reconstruction of a multivariate function from discrete, unstructured data. This book gives a self-contained, complete introduction into this subject. It concentrates on truly meshless methods such as radial basis functions, moving least squares, and partitions of unity. The book starts with an overview on typical applications of scattered data approximation, coming from surface reconstruction, fluid-structure interaction, and the numerical solution of partial differential equations. It then leads the reader from basic properties to the current state of research, addressing all important issues, such as existence, uniqueness, approximation properties, numerical stability, and efficient implementation. Each chapter ends with a section giving information on the historical background and hints for further reading. Complete proofs are included, making this perfectly suited for graduate courses on multivariate approximation and it can be used to support courses in computer-aided geometric design, and meshless methods for partial differential equations.




Programming for Computations - MATLAB/Octave


Book Description

This book presents computer programming as a key method for solving mathematical problems. There are two versions of the book, one for MATLAB and one for Python. The book was inspired by the Springer book TCSE 6: A Primer on Scientific Programming with Python (by Langtangen), but the style is more accessible and concise, in keeping with the needs of engineering students. The book outlines the shortest possible path from no previous experience with programming to a set of skills that allows the students to write simple programs for solving common mathematical problems with numerical methods in engineering and science courses. The emphasis is on generic algorithms, clean design of programs, use of functions, and automatic tests for verification.




Radial Basis Functions


Book Description

The author's aim is to give a thorough treatment from both the theoretical and practical implementation viewpoints. For example, he emphasises the many positive features of radial basis functions such as the unique solvability of the interpolation problem, the computation of interpolants, their smoothness and convergence and provides a careful classification of the radial basis functions into types that have different convergence




Mesh Free Methods


Book Description

As we attempt to solve engineering problems of ever increasing complexity, so must we develop and learn new methods for doing so. The Finite Difference Method used for centuries eventually gave way to Finite Element Methods (FEM), which better met the demands for flexibility, effectiveness, and accuracy in problems involving complex geometry. Now,




Recent Developments in Computational Finance


Book Description

Computational finance is an interdisciplinary field which joins financial mathematics, stochastics, numerics and scientific computing. Its task is to estimate as accurately and efficiently as possible the risks that financial instruments generate. This volume consists of a series of cutting-edge surveys of recent developments in the field written by leading international experts. These make the subject accessible to a wide readership in academia and financial businesses. The book consists of 13 chapters divided into 3 parts: foundations, algorithms and applications. Besides surveys of existing results, the book contains many new previously unpublished results.