Metal-Air and Metal-Sulfur Batteries


Book Description

Metal–air and metal–sulfur batteries (MABs/MSBs) represent one of the most efficient-energy storage technologies, with high round trip efficiency, a long life cycle, fast response at peak demand/supply of electricity, and decreased weight due to the use of atmospheric oxygen as one of the main reactants. This book presents an overview of the main MABs/MSBs from fundamentals to applications. Recent technological trends in their development are reviewed. It also offers a detailed analysis of these batteries at the material, component, and system levels, allowing the reader to evaluate the different approaches of their integration. The book provides a systematic overview of the components, design, and integration, and discusses current technologies, achievements, and challenges, as well as future directions. Each chapter focuses on a particular battery type including zinc–air batteries, lithium–air batteries, aluminum–air batteries, magnesium–air batteries, lithium–sulfur batteries, and vanadium–air redox flow batteries, and metal–sulfur batteries. Features the most recent advances made in metal–air/metal–sulfur batteries. Describes cutting-edge materials and technology for metal–air/metal–sulfur batteries. Includes both fundamentals and applications, which can be used to guide and promote materials as well as technology development for metal–air/metal–sulfur batteries. Provides a systematic overview of the components, design, and integration, and discusses current technologies, achievements, and challenges, as well as future directions. Covers a variety of battery types in depth, such as zinc–air batteries, lithium–air batteries, aluminum–air batteries, magnesium–air batteries, lithium–sulfur batteries, vanadium–air redox flow batteries, and metal–sulfur batteries.




Redox Flow Batteries


Book Description

Flow batteries have received attention in large-scale energy storage due to their flexible design, high safety, high energy efficiency, and environmental friendliness. In recent years, they have been rapidly developed and tested in a variety of scales that prove their feasibility and advantages of use. As energy becomes a global focus, it is important to consider flow battery systems. This book offers a detailed introduction to the function of different kinds of redox flow batteries, including vanadium flow batteries, as well as the electrochemical processes for their development, materials and components, applications, and near future prospects. Redox Flow Batteries: Fundamentals and Applications will give readers a full understanding of flow batteries from fundamentals to commercial applications.




Metal-Air Batteries


Book Description

A comprehensive overview of the research developments in the burgeoning field of metal-air batteries An innovation in battery science and technology is necessary to build better power sources for our modern lifestyle needs. One of the main fields being explored for the possible breakthrough is the development of metal-air batteries. Metal-Air Batteries: Fundamentals and Applications offers a systematic summary of the fundamentals of the technology and explores the most recent advances in the applications of metal-air batteries. Comprehensive in scope, the text explains the basics in electrochemical batteries and introduces various species of metal-air batteries. The author-a noted expert in the field-explores the development of metal-air batteries in the order of Li-air battery, sodium-air battery, zinc-air battery and Mg-O2 battery, with the focus on the Li-air battery. The text also addresses topics such as metallic anode, discharge products, parasitic reactions, electrocatalysts, mediator, and X-ray diffraction study in Li-air battery. Metal-Air Batteries provides a summary of future perspectives in the field of the metal-air batteries. This important resource: -Covers various species of metal-air batteries and their components as well as system designation -Contains groundbreaking content that reviews recent advances in the field of metal-air batteries -Focuses on the battery systems which have the greatest potential for renewable energy storage Written for electrochemists, physical chemists, materials scientists, professionals in the electrotechnical industry, engineers in power technology, Metal-Air Batteries offers a review of the fundamentals and the most recent developments in the area of metal-air batteries.




Lithium Metal Anodes and Rechargeable Lithium Metal Batteries


Book Description

This book provides comprehensive coverage of Lithium (Li) metal anodes for rechargeable batteries. Li is an ideal anode material for rechargeable batteries due to its extremely high theoretical specific capacity (3860 mAh g-1), low density (0.59 g cm-3), and the lowest negative electrochemical potential (−3.040 V vs. standard hydrogenelectrodes). Unfortunately, uncontrollable dendritic Li growth and limited Coulombic efficiency during Li deposition/stripping inherent in these batteries have prevented their practical applications over the past 40 years. With the emergence of post Liion batteries, safe and efficient operation of Li metal anodes has become an enabling technology which may determine the fate of several promising candidates for the next generation energy storage systems, including rechargeable Li-air batteries, Li-S batteries, and Li metal batteries which utilize intercalation compounds as cathodes. In this work, various factors that affect the morphology and Coulombic efficiency of Li anodes are analyzed. The authors also present the technologies utilized to characterize the morphology of Li deposition and the results obtained by modeling of Li dendrite growth. Finally, recent developments, especially the new approaches that enable safe and efficient operation of Li metal anodes at high current densities are reviewed. The urgent need and perspectives in this field are also discussed. The fundamental understanding and approaches presented in this work will be critical for the applicationof Li metal anodes. The general principles and approaches can also be used in other metal electrodes and general electrochemical deposition of metal films.




Encyclopedia of Electrochemical Power Sources


Book Description

The Encyclopedia of Electrochemical Power Sources is a truly interdisciplinary reference for those working with batteries, fuel cells, electrolyzers, supercapacitors, and photo-electrochemical cells. With a focus on the environmental and economic impact of electrochemical power sources, this five-volume work consolidates coverage of the field and serves as an entry point to the literature for professionals and students alike. Covers the main types of power sources, including their operating principles, systems, materials, and applications Serves as a primary source of information for electrochemists, materials scientists, energy technologists, and engineers Incorporates nearly 350 articles, with timely coverage of such topics as environmental and sustainability considerations




Electrochemical Energy Storage


Book Description

The electrochemical storage of energy has become essential in assisting the development of electrical transport and use of renewable energies. French researchers have played a key role in this domain but Asia is currently the market leader. Not wanting to see history repeat itself, France created the research network on electrochemical energy storage (RS2E) in 2011. This book discusses the launch of RS2E, its stakeholders, objectives, and integrated structure that assures a continuum between basic research, technological research and industries. Here, the authors will cover the technological advances as well as the challenges that must still be resolved in the field of electrochemical storage, taking into account sustainable development and the limited time available to us.







Advanced Battery Materials


Book Description

This book details the latest R&D in electrochemical energy storage technologies for portable electronics and electric vehicle applications. During the past three decades, great progress has been made in R & D of various batteries in terms of energy density increase and cost reduction. One of the biggest challenges is increasing the energy density to achieve longer endurance time. In this book, recent research and development in advanced electrode materials for electrochemical energy storage devices is covered. Topics covered in this important book include: Carbon anode materials for sodium-ion batteries Lithium titanate-based lithium-ion batteries Rational material design and performance optimization of transition metal oxide-based lithium ion battery anodes Effects of graphene on the electrochemical properties of the electrode of lithium ion batteries Silicon-based lithium-ion battery anodes Mo-based anode materials for alkali metal ion batteries Lithium-sulfur batteries Graphene in Lithium-Ion/Lithium-Sulfur Batteries Graphene-ionic liquid supercapacitors Battery electrodes based on carbon species and conducting polymers Doped graphene for electrochemical energy storage systems Processing of graphene oxide for enhanced electrical properties




Next Generation Batteries


Book Description

In this book, the development of next-generation batteries is introduced. Included are reports of investigations to realize high energy density batteries: Li-air, Li-sulfur, and all solid-state and metal anode (Mg, Al, Zn) batteries. Sulfide and oxide solid electrolytes are also reviewed.A number of relevant aspects of all solid-state batteries with a carbon anode or Li-metal anode are discussed and described: The formation of the cathode; the interface between the cathode (anode) and electrolyte; the discharge and charge mechanisms of the Li-air battery; the electrolyte system for the Li-air battery; and cell construction. The Li-sulfur battery involves a critical problem, namely, the dissolution of intermediates of sulfur during the discharge process. Here, new electrolyte systems for the suppression of intermediate dissolution are discussed. Li-metal batteries with liquid electrolytes also present a significant problem: the dendrite formation of lithium. New separators and electrolytes are introduced to improve the safety and rechargeability of the Li-metal anode. Mg, Al, and Zn metal anodes have been also applied to rechargeable batteries, and in this book, new metal anode batteries are introduced as the generation-after-next batteries.This volume is a summary of ALCA-SPRING projects, which constitute the most extensive research for next-generation batteries in Japan. The work presented in this book is highly informative and useful not only for battery researchers but also for researchers in the fields of electric vehicles and energy storage.




Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-Air Batteries


Book Description

Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-Air Batteries is a comprehensive book summarizing the recent overview of these new materials developed to date. The book is motivated by research that focuses on the reduction of noble metal content in catalysts to reduce the cost associated to the entire system. Metal oxides gained significant interest in heterogeneous catalysis for basic research and industrial deployment. Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-Air Batteries puts these opportunities and challenges into a broad context, discusses the recent researches and technological advances, and finally provides several pathways and guidelines that could inspire the development of ground-breaking electrochemical devices for energy production or storage. Its primary focus is how materials development is an important approach to produce electricity for key applications such as automotive and industrial. The book is appropriate for those working in academia and R&D in the disciplines of materials science, chemistry, electrochemistry, and engineering. - Includes key aspects of materials design to improve the performance of electrode materials for energy conversion and storage device applications - Reviews emerging metal oxide materials for hydrogen production, hydrogen oxidation, oxygen reduction and oxygen evolution - Discusses metal oxide electrocatalysts for water-splitting, metal-air batteries, electrolyzer, and fuel cell applications