Metal and Ceramic Based Composites


Book Description

Modern scientific and technological fields are frequently of an interdisciplinary nature, and the field of fibrous composites is no exception. Unlike fibre-reinforced plastics, the family of metal- and ceramic-based composites is still quite a new group of materials with a large variety of mechanical and physical properties. Up until now it has been difficult to produce these materials as the necessary technical information has not been well documented. The main purpose of this book is to link together fabrication, structure and properties chains, so as to clarify which structure provides the necessary properties, and how one can attain the correct composite structure. To this end, the book not only contains topics of a purely technical nature, but also a description of the failure mechanics of metal- and ceramic-matrix composites, as this is the key to understanding the structure-properties segment of the chain mentioned. The book is divided into three parts. Part I presents a general view of composites with the accent on metal- and ceramic-matrix composites. It also contains a brief description of modern fibres and composites and can be considered, at least for beginners, as a starting point for further study. Part II looks at the composite microstructures considered to be either optimal or reasonable in resisting a particular loading. Finally Part II describes a variety of mechanical, physical, and chemical potential for organizing these microstructures. Experimental data on technologies, material structures, and material properties are used throughout the book to support theoretical conclusions or to obtain important physical parameters.




Metal and Ceramic Matrix Composites


Book Description

With contributions from leading experts in their respective fields, Metal and Ceramic Matrix Composites provides a comprehensive overview of topics on specific materials and trends. It is a subject regularly included as a final year option in materials science courses and is also of much industrial and academic interest. The book begins wit




Fiber Reinforced Ceramic Composites


Book Description

Provides the first comprehensive treatment of continuous and discontinuous ceramic fiber and whisker reinforced ceramic composites, written by 29 authorities in the field.




Fiber Reinforced Ceramics


Book Description

This report presents a review of previous work in fiber reinforced ceramics and possible matrix fiber combinations are discussed. It is shown that despite a number of virtues of fiber reinforced ceramics, as demonstrated with model materials, the present technology has been unable to capitalize on this approach to achieve more thermally shock resistant ceramics having predictable mechanical integrity. This inability to extrapolate model behavior to 'real' or technologically interesting materials is considered and found to stem from several factors, the most important being thermochemical interaction, cracking, and reinforcement oxidation. Low temperature processing as well as the use of coated filaments are indicated as potential solutions to useful reinforced ceramics. Additionally, the need for studies of the micromechanics of reinforced ceramics is indicated as is the need for studies of subsolidus kinetics in some systems. Thermochemical compatibility features are discussed in detail for many reinforcement-matrix combinations and approaches as well as the utility and limitations of some combinations are indicated. Filaments of chromium and transition metal borides and beryllides, all of which are presently unavailable, are noted as offering potential solutions to some presently indicated problems. (Author).




Metal-Reinforced Ceramics


Book Description

Metal-Reinforced Ceramics covers the principle of metal-fiber-reinforced ceramics, a well-known topic in the field of reinforced concrete. Much of the work that has been done has remained unpublished, hidden in industrial company archives due to the commercial sensitivity associated with the respective technologies that prevailed at the time, which no longer applies today. This book will discuss advanced technologies that have largely been undocumented before in a broad range of industrial application areas, with updates on alumina, silicon carbide, boron carbide, tungsten carbide, fused silica, and carbon-based ceramics which are hard, heat resistant, wear resistant, and chemically durable. Provides detailed information on fundamental principles, advanced processing technologies and industrial applications Features comprehensive industrial knowledge not usually in the public domain from the author’s experience spanning more than three decades Features armor ceramics, bioceramics, aerospace, mining and architectural ceramic applications




Ceramic Fibers and Coatings


Book Description

High-temperature ceramic fibers are the key components of ceramic matrix composites (CMCs). Ceramic fiber properties (strength, temperature and creep resistance, for example)-along with the debonding characteristics of their coatings-determine the properties of CMCs. This report outlines the state of the art in high-temperature ceramic fibers and coatings, assesses fibers and coatings in terms of future needs, and recommends promising avenues of research. CMCs are also discussed in this report to provide a context for discussing high-temperature ceramic fibers and coatings.




Fiber and Whisker Reinforced Ceramics for Structural Applications


Book Description

Examines all important aspects of whisker and fibre reinforced ceramic science and technology, offering a balanced account of developments in the field. The work shows how to improve the strength and stiffness of ceramic composites, at very high temperatures, without brittleness.




Fundamentals of Fibre Reinforced Composite Materials


Book Description

Fiber reinforced composite materials encompass a wide range of material classes from reinforced glasses, plastics, and rubbers through to more recently developed metals and ceramics. Fundamentals of Fibre Reinforced Composite Materials is a comprehensive and authoritative book that introduces the topic with a brief history of composite development, a review of composite applications, the types of fibre used, and their respective indiviual properties. An entire chapter considers organic matrices and their behavior, reviewing all of the most commonly encountered polymer matrix systems. Composite manufacturing techniques are then discussed, including those methods employed in the production of advanced metal and ceramic matrix composites. The remaining chapters are devoted primarily to theoretical treatments of composite behavior, with emphasis on the understanding of damage mechanisms such as cracking, delamination, and fibre breakage. Where a mathematical approach is required, an attempt is made to relate the sometimes rather abstract notions back at the structure of the material being discussed. With extensive sets of sample problems accompanying each chapter, Fundamentals of Fibre Reinforced Composite Materials is ideally suited to undergraduate and graduate students of materials science, structural, mechanical, and aeronautical engineering, polymer science, metallurgy, physics and chemistry. It will also be of use as a reference to researchers working with composite materials and material scientists in general.