Metal-Ligand Interactions: From Atoms, to Clusters, to Surfaces


Book Description

Metal-ligand interactions are currently being studied in different fields, from a variety of points of view, and recent progress has been substantial. Whole new classes of compounds and reactions have been found; an arsenal of physical methods has been developed; mechanistic detail can be ascertained to an increasingly minute degree; and the theory is being developed to handle systems of ever-growing complexity. As usual, such multidisciplinarity leads to great opportunities, coupled with great problems of communication between specialists. It is in its promotion of interactions across these fields that Metal-Ligand Interactions: From Atoms, to Clusters, to Surfaces makes its timely contribution: the tools, both theoretical and experimental, are highly developed, and fundamental questions remain unanswered. The most fundamental of these concerns the nature of the microscopic interactions between metal atoms (clusters, surfaces) and ligands (atoms, molecules, absorbates, reagents, products) and the changes in these interactions during physical and chemical transformation. In Metal-Ligand Interactions, leading experts discuss the following, vital aspects: ab initio theory, semi-empirical theory, density functional theory, complexes and clusters, surfaces, and catalysis.




Metal-Ligand Interactions


Book Description

Metal-Ligand Interactions - Structure and Reactivity emphasizes the experimental determination of structure and dynamics, supported by the theoretical and computational approaches needed to establish the concepts and guide the experiments. Leading experts present masterly surveys of: clusters, inorganic complexes, surfaces, catalysis, ab initio theory, density functional theory,semiempirical methods, and dynamics. Besides the presentations of the fields of study themselves, the papers also bring out those aspects that impinge on, or could benefit from, progress in other disciplines. Refined in the fire of an interactive and stimulating conference, the papers presented here represent the state of the art of current research.




Metal-Ligand Interactions in Chemistry, Physics and Biology


Book Description

Proceedings of the NATO Advanced Study Institute, held in Cetraro (CS) Italy, from 1-12 September 1998




Clusters and Colloids


Book Description

This book offers a comprehensive overview of the rapidly developing field of cluster science. In an interdisciplinary approach, basic concepts as well as recent developments in research and practical applications are authoritatively discussed by leading authors. Topics covered include 'naked' metal clusters, clusters stabilized by ligands, clusters in solids, and colloids. The reader will find answers to questions like: * How many metal atoms must a particle have to exhibit metallic properties? * How can the large specific surface of clusters and colloids be employed in catalysts? * How can metal clusters be introduced into solid hosts? * Which effects are responsible for the transition from isolated to condensed clusters? The editor has succeeded in bringing the contributions of various authors together into a homogeneous, readable book, which will be useful for the academic and industrial reader alike.




Frontiers in Surface Science and Interface Science


Book Description

Any notion that surface science is all about semiconductors and coatings is laid to rest by this encyclopedic publication: Bioengineered interfaces in medicine, interstellar dust, DNA computation, conducting polymers, the surfaces of atomic nuclei - all are brought up to date. Frontiers in Surface and Interface Science - a milestone publication deserving a wide readership. It combines a sweeping expert survey of research today with an educated look into the future. It is a future that embraces surface phenomena on scales from the subatomic to the galactic, as well as traditional topics like semiconductor design, catalysis, and surface processing, modeling and characterization. And, great efforts have been made to express sophisticated ideas in an attractive and accessible way. Nanotechnology, surfaces for DNA computation, polymer-based electronics, soft surfaces, interstellar surface chemistry - all feature in this comprehensive collection.




Springer Handbook of Atomic, Molecular, and Optical Physics


Book Description

Comprises a comprehensive reference source that unifies the entire fields of atomic molecular and optical (AMO) physics, assembling the principal ideas, techniques and results of the field. 92 chapters written by about 120 authors present the principal ideas, techniques and results of the field, together with a guide to the primary research literature (carefully edited to ensure a uniform coverage and style, with extensive cross-references). Along with a summary of key ideas, techniques, and results, many chapters offer diagrams of apparatus, graphs, and tables of data. From atomic spectroscopy to applications in comets, one finds contributions from over 100 authors, all leaders in their respective disciplines. Substantially updated and expanded since the original 1996 edition, it now contains several entirely new chapters covering current areas of great research interest that barely existed in 1996, such as Bose-Einstein condensation, quantum information, and cosmological variations of the fundamental constants. A fully-searchable CD- ROM version of the contents accompanies the handbook.




Cluster Models for Surface and Bulk Phenomena


Book Description

It is widely recognized that an understanding of the physical and chemical properties of clusters will give a great deal of important information relevant to surface and bulk properties of condensed matter. This relevance of clusters for condensed matter is one of the major motivations for the study of atomic and molecular clusters. The changes of properties with cluster size, from small clusters containing only a few atoms to large clusters containing tens of thousands of atoms, provides a unique way to understand and to control the development of bulk properties as separated units are brought together to form an extended system. Another important use of clusters is as theoretical models of surfaces and bulk materials. The electronic wavefunctions for these cluster models have special advantages for understanding, in particular, the local properties of condensed matter. The cluster wavefunctions, obtained with molecular orbital theory, make it possible to relate chemical concepts developed to describe chemical bonds in molecules to the very closely related chemical bonding at the surface and in the bulk of condensed matter. The applications of clusters to phenomena in condensed matter is a cross-disciplinary activity which requires the interaction and collaboration of researchers in traditionally separate areas. For example, it is necessary to bring together workers whose background and expertise is molecular chemistry with those whose background is solid state physics. It is also necessary to bring together experimentalists and theoreticians.




The Synergy Between Dynamics and Reactivity at Clusters and Surfaces


Book Description

The analogy between the chemistry of molecular transition metal clusters and the processes of chemisorption and catalysis at metal surfaces (the Cluster Surface analogy) has for a number of years provided an interplay between experimental and theoretical inorganic and physical chemists. This collaborative approach has born fruit in the use of well defined modes of metal-ligand bonding in discrete molecular clusters, models for metal-ligand binding on surfaces. Some of the key topics discussed in The Synergy between Dynamics and Reactivity at Clusters and Surfaces are: (1) Mechanisms of the fluxional behaviour in clusters in the liquid phase and the connections with diffusion processes on extended surfaces. The role of metal-metal bond breaking in diffusion. (2) Analogies in the structure of chemisorbed species and related ligands on metallic clusters. (3) Analogies between benzene surface chemistry on extended metal surfaces and on metal surfaces in molecular cluster compounds with particular reference to structural distortions. (4) The role of mobile precursors for dissociation of chemisorption on extended metals and on clusters. Are there analogies in the ligand attachment during cluster compound synthesis? (5) The role of defect sites on metal surfaces in catalyzing chemical reactions and the connection to the special bonding properties of sites on metal clusters having lowest metal-metal coordination. (6) The size of metal clusters needed to mimic surface phenomena on bulk metal surfaces. Different sites needed for different phenomena.




Physics and Chemistry of Metal Cluster Compounds


Book Description

On Friday, February 20, 1980, I had the pleasure to be present at the inaugural lecture of my colleague Jan Reedijk, who had just been named at the Chair of Inorganic Chemistry of Leiden University. According to tradition, the ceremony took place in the impressive Hall of the old University Academy Building. In the course of his lecture, Jan mentioned a number of recent developments in chemistry which had struck him as particularly important or interesting. Among those was the synthesis of large metal cluster compounds, and, to my luck, he showed a slide ofthe molecular structure of [PtI9(C)b]4-. (To my luck, since at traditional Leiden University it is quite unusual to show slides at such ceremonies.) This constituted my first acquaintance with this exciting new class of materials. I became immediately fascinated by this molecule, partly because of the esthetic beauty of its fivefold symmetry, partly because as a physicist it struck me that it could be visualized as an "embryonically small" metal particle, embedded in a shell of CO ligands.




Modern Surface Organometallic Chemistry


Book Description

Covering everything from the basics to recent applications, this monograph represents an advanced overview of the field. Edited by internationally acclaimed experts respected throughout the community, the book is clearly divided into sections on fundamental and applied surface organometallic chemistry. Backed by numerous examples from the recent literature, this is a key reference for all chemists.