Metal Oxide-Based Nanofibers and Their Applications


Book Description

Metal Oxide-based Nanofibers and their Applications provides an in-depth overview on developments surrounding the synthesis, characterization properties, and applications achieved by scientific leaders in the area. Sections deal with the theoretical and experimental aspects of the synthesis and methodologies to control microstructure, composition and shape of the nanofibrous metal oxides, review the applications of metal oxide nanofibers in diverse technologies, with special focus on the relation between the structural, morphological and compositional features of the nanofibers, cover applications of metal oxide nanofibers in the fields of sensing (biosensing, gas sensing), and consider biomedical and cleaning technologies. Lastly, a final section covers their application in energy generation and storage technologies (e. g. piezoelectric, solar cells, solid oxide fuel cells, lithium-ion batteries, supercapacitors, and hydrogen storage are reviewed. - Reviews electrospinning methods for the synthesis and design of nanocomposites and hybrid metal oxide nanofibers - Discusses applications of metal oxide nanofibers in sensing, biomedical fields, cleaning technologies, and energy - Emphasizes the structural, morphological and compositional properties of nanofibers and their effect on device performance




Electrospinning


Book Description

This is a timely, an informative, an interesting, and a well-managed book. The book not only offers an in-depth review of the current status of the knowledge of electrospinning and its biomedical applications but also discusses the emerging ideas and features, both from the East and West, with a focus on the needless electrospinning for the production of uniform fibers. The book is equally helpful to the experts of this field, who wish to enhance their understanding of the emerging technologies, and to the new comers, who can use this book as a reference.




Metal Oxides for Non-volatile Memory


Book Description

Metal Oxides for Non-volatile Memory: Materials, Technology and Applications covers the technology and applications of metal oxides (MOx) in non-volatile memory (NVM) technology. The book addresses all types of NVMs, including floating-gate memories, 3-D memories, charge-trapping memories, quantum-dot memories, resistance switching memories and memristors, Mott memories and transparent memories. Applications of MOx in DRAM technology where they play a crucial role to the DRAM evolution are also addressed. The book offers a broad scope, encompassing discussions of materials properties, deposition methods, design and fabrication, and circuit and system level applications of metal oxides to non-volatile memory. Finally, the book addresses one of the most promising materials that may lead to a solution to the challenges in chip size and capacity for memory technologies, particular for mobile applications and embedded systems. - Systematically covers metal oxides materials and their properties with memory technology applications, including floating-gate memory, 3-D memory, memristors, and much more - Provides an overview on the most relevant deposition methods, including sputtering, CVD, ALD and MBE - Discusses the design and fabrication of metal oxides for wide breadth of non-volatile memory applications from 3-D flash technology, transparent memory and DRAM technology




Solution Methods for Metal Oxide Nanostructures


Book Description

Solution Methods for Metal Oxide Nanostructures reviews solution processes that are used for synthesizing 1D, 2D and 3D metal oxide nanostructures in either thin film or in powder form for various applications. Wet-chemical synthesis methods deal with chemical reactions in the solution phase using precursors at proper experimental conditions. Wet-chemical synthesis routes offer a high degree of controllability and reproducibility for 2D nanomaterial fabrication. Solvothermal synthesis, template synthesis, self-assembly, oriented attachment, hot-injection, and interface-mediated synthesis are the main wet-chemical synthesis routes for 2D nanomaterials. Solution Methods for Metal Oxide Nanostructures also addresses the thin film deposition metal oxides nanostructures, which plays a very important role in many areas of chemistry, physics and materials science.Each chapter includes information on a key solution method and their application in the design of metal oxide nanostructured materials with optimized properties for important applications. The pros and cons of the solution method and their significance and future scope is also discussed in each chapter. Readers are provided with the fundamental understanding of the key concepts of solution synthesis methods for fabricating materials and the information needed to help them select the appropriate method for the desired application. - Reviews the most relevant wet chemical solution methods for metal oxide nanostructures, including sol-gel, solvothermal, hydrothermal, co-precipitation methods, and more - Addresses thin film deposition techniques for metal oxide nanostructures, such as spray-pyrolysis, electrodeposition, spin coating and self-assembly - Discusses the pros and cons of each solution method and its significance and future opportunities




Renewable Polymers and Polymer-Metal Oxide Composites


Book Description

Renewable Polymers and Polymer-Metal Oxide Composites: Synthesis, Properties, and Applications serves as a reference on the key concepts of the advances of polymer-oxide composites. The book reviews knowledge on polymer-composite theory, properties, structure, synthesis, and their characterization and applications. There is an emphasis on coupling metal oxides with polymers from renewable sources. Also, the latest advances in the relationship between the microstructure of the composites and the resulting improvement of the material's properties and performance are covered. The applications addressed include desalination, tissue engineering, energy storage, hybrid energy systems, food, and agriculture. This book is suitable for early-career researchers in academia and R&D in industry who are working in the disciplines of materials science, engineering, chemistry and physics. - Provides basic principles, theory and synthetic methods of composite materials, polymer composites and metal oxides - Reviews the latest advances in polymer-oxide-based applications in medicine, water treatment, energy and sensing - Discusses materials from renewable resources, including lifecycle assessment, economic aspects and potential application in tissue engineering, photovoltaics and food packaging




Metal Oxide Defects


Book Description

Metal Oxide Defects: Fundamentals, Design, Development and Applications provides a broad perspective on the development of advanced experimental techniques to study defects and their chemical activity and catalytic reactivity in various metal oxides. This book highlights advances in characterization and analytical techniques to achieve better understanding of a wide range of defects, most importantly, state-of-the-art methodologies for controlling defects. The book provides readers with pathways to apply basic principles and interpret the behavior of metal oxides. After reviewing characterization and analytical techniques, the book focuses on the relationship of defects to the properties and performance of metal oxides. Finally, there is a review of the methods to control defects and the applications of defect engineering for the design of metal oxides for applications in optoelectronics, energy, sensing, and more. This book is a key reference for materials scientists and engineers, chemists, and physicists. - Reviews advances in characterization and analytical techniques to understand the behavior of defects in metal oxide materials - Introduces defect engineering applied to the design of metal oxide materials with desirable properties - Discusses applications of defect engineering to enhance the performance of materials for a wide range of applications, with an emphasis on optoelectronics




Metallic Glasses and Their Oxidation


Book Description

Metallic Glasses and Their Oxidation provides a comprehensive review of the structures, properties, preparations, processing and applications of metallic glasses. Special attention is paid to the oxidation behaviors and related mechanisms of metallic glasses that occur during their preparation, processing and application. The book's authors introduce basic knowledge of metallic glasses, including their structures, properties, processing techniques and applications. Then, the theories and techniques commonly used in oxidation investigation are highlighted, including thermal oxidation, native oxidation, stressed oxidation, powder oxidation and oxidation simulation. The book closes with the influence of oxidation on the structures and performances of metallic glasses, proposes measures to control oxidation, and discusses how to take advantage of oxidation to reinforce materials or create new materials. - Introduces the latest knowledge on the structures, properties, preparation, processing and application of metallic glasses - Reviews the fundamental concepts surrounding metal oxidation, including techniques, devices and methods frequently used in oxidation research - Discusses measures to control oxidation and the possibilities of using oxidation to reinforce metallic glasses or create new types of materials




Metal Oxides for Next-generation Optoelectronic, Photonic, and Photovoltaic Applications


Book Description

Metal Oxides for Next Generation Optoelectronic, Photonic and Photovoltaic Applications focuses on the optoelectronic, photonic and photovoltaic behaviors of metallic oxides and closely related phenomena, from elementary principles to the latest findings. Each chapter includes a comprehensive evaluation of the synthesis and characterization of the most relevant metal oxides nanostructures for each application. In addition, there is a focus on methods to tune the materials' properties in order to improve devices performance. This book is suitable for researchers and practitioners in academia and industry working in the disciplines of materials science and engineering, chemistry and physics. Metal oxides are widely used in various optoelectronic devices, photonics, display devices, smart windows, sensors, optical components, energy-saving, and harvesting devices. Each application requires materials with their own specific properties. By controlling the particle size, shape, crystal structure, one can tune various properties of metal oxides viz. bandgap, absorption properties, conductivity, which alter the material for the specific application. - Includes discussions of synthesis and characterization of metal oxides materials for applications in next-generation optoelectronic, photonic and photovoltaic devices - Emphasizes material design strategies of metal oxide nanostructures - Focuses on the optoelectronic, photonic and photovoltaic behaviors of metallic oxides and closely related phenomena, from elementary principles to the latest findings




Perovskite Metal Oxides


Book Description

Perovskite Metal Oxides: Synthesis, Properties and Applications provides an overview on the topic, including the synthesis of various types of perovskites, their properties, characterization and application. The book reviews the applications of this category of materials for photovoltaics, electronics, biomedical, fuel cell, photocatalyst, sensor, energy storage and catalysis, along with processing techniques of perovskite metal oxides with a focus on low-cost and high-efficiency methods, including various properties and probable applications in academia and industry. Other sections discuss strategies to improve the functionality of perovskite metal oxide materials, including chemical methods and controlling the size, shape and structure of the materials. Finally, applications of perovskite metal oxides in energy conversion and storage, sensing and electronics are covered. - Provides an overview of perovskite metal oxides, with an emphasis on synthesis, fabrication and characterization methods - Discusses strategies to improve the functionality of perovskite metal oxide materials, including chemical methods and controlling the size, shape and structure of the materials - Reviews applications of perovskite metal oxides in energy conversion and storage, sensing and electronics




Nanostructured Zinc Oxide


Book Description

Nanostructured Zinc Oxide covers the various routes for the synthesis of different types of nanostructured zinc oxide including; 1D (nanorods, nanowires etc.), 2D and 3D (nanosheets, nanoparticles, nanospheres etc.). This comprehensive overview provides readers with a clear understanding of the various parameters controlling morphologies. The book also reviews key properties of ZnO including optical, electronic, thermal, piezoelectric and surface properties and techniques in order to tailor key properties. There is a large emphasis in the book on ZnO nanostructures and their role in optoelectronics. ZnO is very interesting and widely investigated material for a number of applications. This book presents up-to-date information about the ZnO nanostructures-based applications such as gas sensing, pH sensing, photocatalysis, antibacterial activity, drug delivery, and electrodes for optoelectronics. - Reviews methods to synthesize, tailor, and characterize 1D, 2D, and 3D zinc oxide nanostructured materials - Discusses key properties of zinc oxide nanostructured materials including optical, electronic, thermal, piezoelectric, and surface properties - Addresses most relevant zinc oxide applications in optoelectronics such as light-emitting diodes, solar cells, and sensors