Metalloproteomics


Book Description

Synthesizes the current knowledge in the field and provides new insights into medical applications Metalloproteomics is the large-scale study of metal-binding proteins. These proteins, which represent about one quarter of all the proteins in the Protein Data Bank, play important roles in all biological systems and all biological processes. Metalloproteomics provides the latest information on all major families of metal-binding proteins, including their structural, physico-chemical, and functional properties, enabling readers to better understand these proteins. Moreover, the book demonstrates how understanding the structures, properties, and functions of intracellular and extracellular metal-binding proteins may unlock the key to drug development for the treatment of a myriad of diseases. Written by Eugene Permyakov, an international expert and pioneer in the structural analysis of metal-binding proteins, the book offers Theoretical introduction to cation binding Broad range of methods for investigating the binding of different cations to proteins Characteristics of interactions of physiologically important cations of Ca, Mg, Zn, Fe, Mn, Co, Cu, Ni, Mo, W, Na, and K with proteins Detailed considerations of structural and physico-chemical properties of the metal-binding proteins Interactions of all other metal cations with proteins Interactions of different types of cations with nucleic acids Throughout the text, the author integrates principles of proteomics. In addition, detailed examples underscore the role metal-binding proteins play in health and medicine. Bringing together and analyzing all the latest findings, Metalloproteomics' scope and level of insight are unparalleled. It is recommended for biophysicists, biochemists, enzymologists, cell and molecular biologists, protein and peptide scientists, organic and bioinorganic chemists, and chemical biologists.




Nuclear Analytical Techniques for Metallomics and Metalloproteomics


Book Description

Nuclear analytical techniques have many advantages over other techniques, such as high sensitivity and precision. They couple powerful selective separation with sensitive element-specific detection. The uses of metalloproteomics studies are restricted to the fields of analytical and nuclear chemistry. They also have great potential to elucidate the origins of certain diseases and assist in their diagnosis and treatment via the development of new drugs. Nuclear Analytical Techniques for Metallomics and Metalloproteomics provides readers with a comprehensive view of this relatively new and exciting area of bioanalytical and inorganic chemistry. It contains contributions from experts in disciplines as diverse as analytical chemistry, nuclear chemistry, environmental science, molecular biology and medicinal chemistry. Various nuclear analytical techniques are covered including neutron activation analysis, X-ray fluorescence, isotope tracer, M÷ssbauer spectrometry, X-ray absorption spectrometry, and neutron scattering and diffraction. They provide useful information both for chemical speciation analysis and structural characterization of metalloproteins and metals in biological systems. Consequently, the book is not only relevant for chemists involved in nuclear techniques and speciation, but also environmental, nutritional and clinical researchers and drug developers. The book includes many illustrations, tables and documents to support the coverage of the latest developments. It also offers a well-organized bibliography to facilitate further reading.




Nuclear Analytical Techniques for Metallomics and Metalloproteomics


Book Description

Nuclear analytical techniques have many advantages over other techniques, such as high sensitivity and precision. They couple powerful selective separation with sensitive element-specific detection. The uses of metalloproteomics studies are restricted to the fields of analytical and nuclear chemistry. They also have great potential to elucidate the origins of certain diseases and assist in their diagnosis and treatment via the development of new drugs. Nuclear Analytical Techniques for Metallomics and Metalloproteomics provides readers with a comprehensive view of this relatively new and exciting area of bioanalytical and inorganic chemistry. It contains contributions from experts in disciplines as diverse as analytical chemistry, nuclear chemistry, environmental science, molecular biology and medicinal chemistry. Various nuclear analytical techniques are covered including neutron activation analysis, X-ray fluorescence, isotope tracer, M÷ssbauer spectrometry, X-ray absorption spectrometry, and neutron scattering and diffraction. They provide useful information both for chemical speciation analysis and structural characterization of metalloproteins and metals in biological systems. Consequently, the book is not only relevant for chemists involved in nuclear techniques and speciation, but also environmental, nutritional and clinical researchers and drug developers.




Inorganic and Organometallic Transition Metal Complexes with Biological Molecules and Living Cells


Book Description

Inorganic and Organometallic Transition Metal Complexes with Biological Molecules and Living Cells provides a complete overview of this important research area that is perfect for both newcomers and expert researchers in the field. Through concise chapters written and edited by esteemed experts, this book brings together a comprehensive treatment of the area previously only available through scattered, lengthy review articles in the literature. Advanced topics of research are covered, with particular focus on recent advances in the biological applications of transition metal complexes, including inorganic medicine, enzyme inhibitors, antiparasital agents, and biological imaging reagents. - Geared toward researchers and students who seek an introductory overview of the field, as well as researchers working in advanced areas - Focuses on the interactions of inorganic and organometallic transition metal complexes with biological molecules and live cells - Foscuses on the fundamentals and their potential therapeutic and diagnostic applications - Covers recent biological applications of transition metal complexes, such as anticancer drugs, enzyme inhibitors, bioconjugation agents, chemical biology tools, and bioimaging reagents




Encyclopedia of Metalloproteins


Book Description

In biochemistry, a metalloprotein is a generic term for a protein that contains a metal cofactor. The metal may be an isolated ion or may be coordinated with a nonprotein organic compound, such as the porphyrin found in hemoproteins. In some cases, the metal is co-coordinated with a side chain of the protein and an inorganic nonmetallic ion. This kind of protein-metal-nonmetal structure is seen in iron-sulfur clusters Metalloproteins deals with all aspects related to the intracellular and extracellular metal-binding proteins, including their structures, properties and functions. The biological roles of metal cations and metal-binding proteins are endless. They are involved in all crucial cellular activities. Many pathological conditions are related to the problematic metal metabolism. Research in metalloprotein-related topics is therefore rapidly growing, and different aspects of metal-binding proteins progressively enter curricula at Universities and even at the High School level on occasion. However, no key resource providing basic, but comprehensible knowledge on this rapidly expanding field exists. The Encyclopedia of Metalloproteins aims to bridge this gap, and will attempt to cover various aspects of metalloprotein/metalloproteomics and will deal with the different issues related to the intracellular and extracellular metal-binding proteins, including their structures, properties and functions. The goal is to cover exhaustively all catalytically and biologically crucial metal ions and to find at least one interacting protein for other metal ions. The Encyclopedia of Metalloproteins will provide a key resource for advanced undergraduate and graduate students, researchers, instructors, and professors interested in protein science, biochemistry, cell biology, and genetics.




Clinical and Translational Perspectives on WILSON DISEASE


Book Description

Clinical and Translational Perspectives on Wilson Disease brings together the genetics, cell and structural biology of Wilson Disease into one contemporary, easy to navigate handbook. Created to meet the diverse needs of the clinical and research communities surrounding Wilson Disease, this reference provides a worldwide approach that is concise and translational. Specifically, it provides a basis for clinicians to appreciate 'basic science' aspects of Wilson disease, presenting a guide for researchers to understand the clinical disorder on which their research is focused and fostering constructive dialogue and progress for this puzzling disorder. - Delivers numerous, succinct, expert chapters with summaries designed for quick reference - Includes a 'How-to appendix' for diagnosis and management tips - Contains access to a companion website with a self-help teaching module, links to key resources, and an extended reference list




Ecotoxicology


Book Description

This book presents an integrated discussion on ecotoxicology, containing both general concepts and specific ecotoxicological issues of major biological groups, extending beyond conventional systems. It explores worldwide, regional, and biocompartmentalized topics, bringing forth new points of view on global issues and addressing the increasing diversity and complexity of the ecotoxicological field. It also contains novel information on emerging contaminants, presents bioaccumulation effects on different levels of ecological organization and risk analyses, and discusses novel fields of methodological applications, including key aspects in ecotoxicological and environmental monitoring studies.




Essential and Non-essential Metals


Book Description

This book aims to present current state of understanding of the role of metals in human health and disease. As it will be difficult to cover all of the metals, about two scores of them, the authors will instead provide a detailed analysis of a select set of essential (Calcium, Magnesium, Selenium, Iron, copper and Zinc) and non-essential metals (Nickel, Chromium, Cadmium and Arsenic, Tungsten and Asbestos). Each chapter will have a dedicated section focusing on the binary role that some of these metals play, their carcinogenic and cancer therapeutics, by integrating epidemiological, experimental evidence with special emphasis and focus on molecular mechanisms involved in these processes. The biological analysis will also include emerging lines of evidence such as micro RNAS, kinase families, receptors, endoplasmic, mitochondrial players and epigenetics. As part of integrating the human, experimental and mechanistic data, as well as a detailed analysis into the modes of action for different cancer outcomes will be discussed in each chapter wherever deemed feasible. These approaches are ones in which no other book in this area has attempted to do.




Trace Metals and Infectious Diseases


Book Description

Experts explore the influence of trace metals on the pathogenesis of infectious diseases. Many parts of the world in which common infectious diseases are endemic also have the highest prevalence of trace metal deficiencies or rising rates of trace metal pollution. Infectious diseases can increase human susceptibility to adverse effects of metal exposure (at suboptimal or toxic levels), and metal excess or deficiency can increase the incidence or severity of infectious diseases. The co-clustering of major infectious diseases with trace metal deficiency or toxicity has created a complex web of interactions with serious but poorly understood health repercussions, yet has been largely overlooked in animal and human studies. This book focuses on the distribution, trafficking, fate, and effects of trace metals in biological systems. Its goal is to enhance our understanding of the relationships between homeostatic mechanisms of trace metals and the pathogenesis of infectious diseases. Drawing on expertise from a range of fields, the book offers a comprehensive review of current knowledge on vertebrate metal-withholding mechanisms and the strategies employed by different microbes to avoid starvation (or poisoning). Chapters summarize current, state-of-the-art techniques for investigating pathogen-metal interactions and highlight open question to guide future research. The book makes clear that improving knowledge in this area will be instrumental to the development of novel therapeutic measures against infectious diseases. Contributors M. Leigh Ackland, Vahid Fa Andisi, Angele L. Arrieta, Michael A. Bachman, J. Sabine Becker, Robert E. Black, Julia Bornhorst, Sascha Brunke, Joseph A. Caruso, Jennifer S. Cavet, Anson C. K. Chan, Christopher H. Contag, Heran Darwin, George V. Dedoussis, Rodney R. Dietert, Victor J. DiRita, Carol A. Fierke, Tamara Garcia-Barrera, David P. Giedroc, Peter-Leon Hagedoorn, James A. Imlay, Marek J. Kobylarz, Joseph Lemire, Wenwen Liu, Slade A. Loutet, Wolfgang Maret, Andreas Matusch, Trevor F. Moraes, Michael E. P. Murphy, Maribel Navarro, Jerome O. Nriagu, Ana-Maria Oros-Peusquens, Elisabeth G. Pacyna, Jozef M. Pacyna, Robert D. Perry, John M. Pettifor, Stephanie Pfaffen, Dieter Rehder, Lothar Rink, Anthony B. Schryvers, Ellen K. Silbergeld, Eric P. Skaar, Miguel C. P. Soares, Kyrre Sundseth, Dennis J. Thiele, Richard B. Thompson, Meghan M. Verstraete, Gonzalo Visbal, Fudi Wang, Mian Wang, Thomas J. Webster, Jeffrey N. Weiser, Günter Weiss, Inga Wessels, Bin Ye, Judith T. Zelikoff, Lihong Zhang




Heavy Metal Stress in Plants


Book Description

Plants possess a range of potential cellular mechanisms that may be involved in the detoxification of heavy metals and thus tolerance to metal stress. Metal toxicity causes multiple direct and indirect effects in plants that concern practically all physiological functions. The main purpose of this book is to present comprehensive and concise information on recent advances in the field of metal transport and how genetic diversity affects heavy metal transport in plants. Other key futures of the book are related to metal toxicity and detoxification mechanisms, biochemical tools for HM remediation processes, molecular mechanisms for HM detoxification, how metallomics and metalloproteomics are affected by heavy metal stress in plants, and the role of ROS metabolism in the alleviation of heavy metals. Some chapters also focus on recent developments in the field of phytoremediation. Overall the book presents in-depth information and the most essential advances in the field of heavy metal toxicity in plants in recent years.