Methane Gas Hydrate


Book Description

Gas hydrates represent one of the world’s largest untapped reservoirs of energy and, according to some estimates, have the potential to meet global energy needs for the next thousand years. "Methane Gas Hydrate" examines this potential by focusing on methane gas hydrate, which is increasingly considered a significant source of energy. "Methane Gas Hydrate" gives a general overview of natural gas, before delving into the subject of gas hydrates in more detail and methane gas hydrate in particular. As well as discussing methods of gas production, it also discusses the safety and environmental concerns associated with the presence of natural gas hydrates, ranging from their possible impact on the safety of conventional drilling operations to their influence on Earth’s climate. "Methane Gas Hydrate" is a useful reference on an increasingly popular energy source. It contains valuable information for chemical engineers and researchers, as well as for postgraduate students.




Soils and Waves


Book Description

J. Carlos Santamarina, Georgia Institute of Technology, USA in collaboration with Katherine A. Klein, University of Toronto, Canada; Moheb A. Fam, Cairo University, Egypt Soils are unique materials. Analogous to all other particulate materials, their properties depend on environmental parameters, such as confinement and fluid characteristics. While their behavior is complex, simple micromechanical analyses at the particle level provide unparalleled insight. Furthermore, elastic and electromagnetic waves can be effectively used to gain complementary information about the particulate medium, leading to unique possibilities for studies in engineering and science, including field applications for site assessment and process monitoring. This book is divided into five parts. The first part dwells on the problem of scale and includes a general introduction to materials. In the second part, the behavior of particulate materials is reviewed, with emphasis on the microscale interpretation of macroscale behavior. Fundamental differences between fine and coarse particulate materials are highlighted. The third and fourth parts center on the propagation of mechanical and electromagnetic waves in particulate materials, addressing phenomena such as stiffness, polarization and losses. These two units include laboratory techniques to measure the elastic and electromagnetic spectral response of particulate materials, and an extensive compilation of experimental data. Finally, the fifth part applies elastic and electromagnetic waves to monitoring process in soils. Emphasis is placed on clear, simple analyses and explanations of complex physical phenomena, making this book ideal for self-study. Furthermore, no other book provides such an in-depth description of soils and their behavior and the interaction of elastic and electromagnetic waves and particulate materials (including material data and experimental methods). Thus, this is an invaluable reference for postgraduates, research scientists and practitioners in geotechnical, civil and environmental engineering, as well as scientists in related areas such as physics, geophysics and materials science.




Gas Hydrates 2


Book Description

Gas hydrates in their natural environment and for potential industrial applications (Volume 2).




Hydrates of Hydrocarbons


Book Description

Hydrates of Hydrocarbons is the first book to address methods of hydrate removal and, most importantly, prevention of hydrate build-up. The book provides solutions formulated for drilling, pipeline, and chemical engineers in both the onshore and offshore environments, as well as educators in advanced petroleum and chemical engineering courses. It also offers timely information on the use of hydrate properties in new technologies and the production of gas from natural gas hydrate deposits.




Natural Gas Hydrate


Book Description

1. THE BEGINNINGS OF HYDRATE RESEARCH Until very recently, our understanding of hydrate in the natural environment and its impact on seafloor stability, its importance as a sequester of methane, and its potential as an important mechanism in the Earth's climate change system, was masked by our lack of appreciation of the vastness of the hydrate resource. Only a few publications on naturally occurring hydrate existed prior to 1975. The first published reference to oceanic gas hydrate (Bryan and Markl, 1966) and the first publication in the scientific literature (Stoll, et a1., 1971) show how recently it has been since the topic of naturally occurring hydrate has been raised. Recently, however, the number of hydrate publications has increased substantially, reflecting increased research into hydrate topics and the initiation of funding to support the researchers. Awareness of the existence of naturally occurring gas hydrate now has spread beyond the few scientific enthusiasts who pursued knowledge about the elusive hydrate because of simple interest and lurking suspicions that hydrate would prove to be an important topic. The first national conference on gas hydrate in the U.S. was held as recently as April, 1991 at the U.S. National Center of the U.s. Geological Survey in Reston Virginia (Max et al., 1991). The meeting was co-hosted by the U.s. Geological Survey, the Naval Research Laboratory, and the U.S.




Proceedings of the 1st Vietnam Symposium on Advances in Offshore Engineering


Book Description

These proceedings gather a selection of refereed papers presented at the 1st Vietnam Symposium on Advances in Offshore Engineering (VSOE 2018), held on 1–3 November 2018 in Hanoi, Vietnam. The contributions from researchers, practitioners, policymakers, and entrepreneurs address technological and policy changes intended to promote renewable energies, and to generate business opportunities in oil and gas and offshore renewable energy. With a special focus on energy and geotechnics, the book brings together the latest lessons learned in offshore engineering, technological innovations, cost-effective and safer foundations and structural solutions, environmental protection, hazards, vulnerability, and risk management. The book offers a valuable resource for all graduate students, researchers and industrial practitioners working in the fields of offshore engineering and renewable energies.




Energy from Gas Hydrates: Assessing the Opportunities and Challenges for Canada


Book Description

Page 1 ENERGY FROM GAS HYDRATES: ASSESSING THE OPPORTUNITIES & CHALLENGES FOR CANADA The Expert Panel on Gas Hydrates Council of Canadian Academies Science Advice in the Public Interest Conseil des académies canadiennes EnErgy from gas HydratEs - assEssing tHE opportunitiEs and CHallEngEs for Canada Report of the Expert Panel on Gas Hydrates iv Energy from Gas Hydrates tHE CounCil of Canadian aCad [...] Engineering and the RSC: The Academies of. [...] The reviewers assessed the objectivity and quality of. [...] Gas Hydrate Basics - Introduction to the Science and Occurrence of. [...] Energy from Gas Hydrates 3 ovErviEW of gas HydratEs - a primEr on tHE ContEXt The gas held in naturally occurring gas hydrate is generated by microbial or thermal alteration of.




Active Subspaces


Book Description

Scientists and engineers use computer simulations to study relationships between a model's input parameters and its outputs. However, thorough parameter studies are challenging, if not impossible, when the simulation is expensive and the model has several inputs. To enable studies in these instances, the engineer may attempt to reduce the dimension of the model's input parameter space. Active subspaces are an emerging set of dimension reduction tools that identify important directions in the parameter space. This book describes techniques for discovering a model's active subspace and proposes methods for exploiting the reduced dimension to enable otherwise infeasible parameter studies. Readers will find new ideas for dimension reduction, easy-to-implement algorithms, and several examples of active subspaces in action.




Hydrates of Natural Gas


Book Description




Foundations of Elastoplasticity: Subloading Surface Model


Book Description

This book is the standard text book for elastoplasticity/viscoplasticity which is explained comprehensively covering the rate-independent to -dependent finite deformations of metals, soils, polymers, crystal plasticity, etc. and the friction phenomenon. Concise explanations on vector-tensor analysis and continuum mechanics are provided first, covering the underlying physical concepts, e.g. various time-derivatives, pull-back and push-forward operations, work-conjugacy and multiplicative decomposition of deformation gradient tensor. Then, the rigorous elastoplastic/viscoplastic model, called the subloading surface model, is explained comprehensively, which is based on the subloading surface concept to describe the continuous development of the plastic/viscoplastic strain rate as the stress approaches to the yield surface, while it can never be described by the other plasticity models, e.g. the Chaboche-Ohno and the Dafalias-Yoshida models assuming the purely-elastic domain. The main features of the subloading surface model are as follows: 1) The subloading surface concept underling the cyclic plasticity is introduced, which insists that the plastic deformation develops as the stress approaches the yield surface. Thus, the smooth elastic-plastic transition leading to the continuous variation of the tangent stiffness modulus is described always. 2) The subloading-overstress model is formulated by which the elastoplastic deformation during the quasi-static loading and the viscoplastic deformation during the dynamic and impact loading can be described by the unified equation. Then, only this model can be used to describe the deformation in the general rate of deformation, disusing the elastoplastic constitutive equation. 3) The hyperelastic-based (visco)plasticity based on the multiplicative decomposition of deformation gradient tensor and the subloading surface model is formulated for the exact descriptions of the finite elastic and (visco)plastic deformations. 4) The subloading-friction model is formulated for the exact description of the dry and the fluid (lubricated) frictions at the general rate of sliding from the static to the impact sliding. Thus, all the elastic and inelastic deformation/sliding phenomena of solids can be described accurately in the unified equation by the subloading-overstress model. The subloading surface model will be engraved as the governing law of irreversible deformation of solids in the history of solid mechanics.