Linear Operator Equations: Approximation And Regularization


Book Description

Many problems in science and engineering have their mathematical formulation as an operator equation Tx=y, where T is a linear or nonlinear operator between certain function spaces. In practice, such equations are solved approximately using numerical methods, as their exact solution may not often be possible or may not be worth looking for due to physical constraints. In such situations, it is desirable to know how the so-called approximate solution approximates the exact solution, and what the error involved in such procedures would be.This book is concerned with the investigation of the above theoretical issues related to approximately solving linear operator equations. The main tools used for this purpose are basic results from functional analysis and some rudimentary ideas from numerical analysis. To make this book more accessible to readers, no in-depth knowledge on these disciplines is assumed for reading this book.




Methods for Solving Operator Equations


Book Description

The Inverse and Ill-Posed Problems Series is a series of monographs publishing postgraduate level information on inverse and ill-posed problems for an international readership of professional scientists and researchers. The series aims to publish works which involve both theory and applications in, e.g., physics, medicine, geophysics, acoustics, electrodynamics, tomography, and ecology.




Approximate Solution of Operator Equations


Book Description

One of the most important chapters in modern functional analysis is the theory of approximate methods for solution of various mathematical problems. Besides providing considerably simplified approaches to numerical methods, the ideas of functional analysis have also given rise to essentially new computation schemes in problems of linear algebra, differential and integral equations, nonlinear analysis, and so on. The general theory of approximate methods includes many known fundamental results. We refer to the classical work of Kantorovich; the investigations of projection methods by Bogolyubov, Krylov, Keldysh and Petrov, much furthered by Mikhlin and Pol'skii; Tikho nov's methods for approximate solution of ill-posed problems; the general theory of difference schemes; and so on. During the past decade, the Voronezh seminar on functional analysis has systematically discussed various questions related to numerical methods; several advanced courses have been held at Voronezh Uni versity on the application of functional analysis to numerical mathe matics. Some of this research is summarized in the present monograph. The authors' aim has not been to give an exhaustive account, even of the principal known results. The book consists of five chapters.




Methods for Solution of Nonlinear Operator Equations


Book Description

The Inverse and Ill-Posed Problems Series is a series of monographs publishing postgraduate level information on inverse and ill-posed problems for an international readership of professional scientists and researchers. The series aims to publish works which involve both theory and applications in, e.g., physics, medicine, geophysics, acoustics, electrodynamics, tomography, and ecology.




Dynamical Systems Method for Solving Nonlinear Operator Equations


Book Description

Dynamical Systems Method for Solving Nonlinear Operator Equations is of interest to graduate students in functional analysis, numerical analysis, and ill-posed and inverse problems especially. The book presents a general method for solving operator equations, especially nonlinear and ill-posed. It requires a fairly modest background and is essentially self-contained. All the results are proved in the book, and some of the background material is also included. The results presented are mostly obtained by the author. - Contains a systematic development of a novel general method, the dynamical systems method, DSM for solving operator equations, especially nonlinear and ill-posed - Self-contained, suitable for wide audience - Can be used for various courses for graduate students and partly for undergraduates (especially for RUE classes)




Iterative Methods for the Solution of a Linear Operator Equation in Hilbert Space


Book Description

In this expository work we shall conduct a survey of iterative techniques for solving the linear operator equations Ax=y in a Hilbert space. Whenever convenient these iterative schemes are given in the context of a complex Hilbert space -- Chapter II is devoted to those methods (three in all) which are given only for real Hilbert space. Thus chapter III covers those methods which are valid in a complex Hilbert space except for the two methods which are singled out for special attention in the last two chapters. Specifically, the method of successive approximations is covered in Chapter IV, and Chapter V consists of a discussion of gradient methods. While examining these techniques, our primary concern will be with the convergence of the sequence of approximate solutions. However, we shall often look at estimates of the error and the speed of convergence of a method.







Approximate Solution of Operator Equations with Applications


Book Description

Researchers are faced with the problem of solving a variety of equations in the course of their work in engineering, economics, physics, and the computational sciences. This book focuses on a new and improved local-semilocal and monotone convergence analysis of efficient numerical methods for computing approximate solutions of such equations, under weaker hypotheses than in other works. This particular feature is the main strength of the book when compared with others already in the literature.The explanations and applications in the book are detailed enough to capture the interest of curious readers and complete enough to provide the necessary background material to go further into the subject.




Approximate Solutions of Operator Equations


Book Description

This book offers an elementary and self-contained introduction to many fundamental issues concerning approximate solutions of operator equations formulated in an abstract Banach space setting, including important topics such as solvability, computational schemes, convergence, stability and error estimates. The operator equations under investigation include various linear and nonlinear types of ordinary and partial differential equations, integral equations, and abstract evolution equations, which are frequently involved in applied mathematics and engineering applications.Each chapter contains well-selected examples and exercises, for the purposes of demonstrating the fundamental theories and methods developed in the text and familiarizing the reader with functional analysis techniques useful for numerical solutions of various operator equations.




Nonlinear Stochastic Operator Equations


Book Description

Nonlinear Stochastic Operator Equations deals with realistic solutions of the nonlinear stochastic equations arising from the modeling of frontier problems in many fields of science. This book also discusses a wide class of equations to provide modeling of problems concerning physics, engineering, operations research, systems analysis, biology, medicine. This text discusses operator equations and the decomposition method. This book also explains the limitations, restrictions and assumptions made in differential equations involving stochastic process coefficients (the stochastic operator case), which yield results very different from the needs of the actual physical problem. Real-world application of mathematics to actual physical problems, requires making a reasonable model that is both realistic and solvable. The decomposition approach or model is an approximation method to solve a wide range of problems. This book explains an inherent feature of real systems—known as nonlinear behavior—that occurs frequently in nuclear reactors, in physiological systems, or in cellular growth. This text also discusses stochastic operator equations with linear boundary conditions. This book is intended for students with a mathematics background, particularly senior undergraduate and graduate students of advanced mathematics, of the physical or engineering sciences.