Statistical Methods for Reliability Data


Book Description

An authoritative guide to the most recent advances in statistical methods for quantifying reliability Statistical Methods for Reliability Data, Second Edition (SMRD2) is an essential guide to the most widely used and recently developed statistical methods for reliability data analysis and reliability test planning. Written by three experts in the area, SMRD2 updates and extends the long- established statistical techniques and shows how to apply powerful graphical, numerical, and simulation-based methods to a range of applications in reliability. SMRD2 is a comprehensive resource that describes maximum likelihood and Bayesian methods for solving practical problems that arise in product reliability and similar areas of application. SMRD2 illustrates methods with numerous applications and all the data sets are available on the book’s website. Also, SMRD2 contains an extensive collection of exercises that will enhance its use as a course textbook. The SMRD2's website contains valuable resources, including R packages, Stan model codes, presentation slides, technical notes, information about commercial software for reliability data analysis, and csv files for the 93 data sets used in the book's examples and exercises. The importance of statistical methods in the area of engineering reliability continues to grow and SMRD2 offers an updated guide for, exploring, modeling, and drawing conclusions from reliability data. SMRD2 features: Contains a wealth of information on modern methods and techniques for reliability data analysis Offers discussions on the practical problem-solving power of various Bayesian inference methods Provides examples of Bayesian data analysis performed using the R interface to the Stan system based on Stan models that are available on the book's website Includes helpful technical-problem and data-analysis exercise sets at the end of every chapter Presents illustrative computer graphics that highlight data, results of analyses, and technical concepts Written for engineers and statisticians in industry and academia, Statistical Methods for Reliability Data, Second Edition offers an authoritative guide to this important topic.




Statistical Analysis of Reliability and Life-testing Models


Book Description

Probabilistic models; Basic statistical inference; The exponential distribution; The weibull distribution; The gamma distribution; Extreme-value distribution; The logistic and other distribution; Goodness-of-fit tests.




Introduction to Reliability Analysis


Book Description

Reliability analysis is concerned with the analysis of devices and systems whose individual components are prone to failure. This textbook presents an introduction to reliability analysis of repairable and non-repairable systems. It is based on courses given to both undergraduate and graduate students of engineering and statistics as well as in workshops for professional engineers and scientists. As aresult, the book concentrates on the methodology of the subject and on understanding theoretical results rather than on its theoretical development. An intrinsic aspect of reliability analysis is that the failure of components is best modelled using techniques drawn from probability and statistics. Professor Zacks covers all the basic concepts required from these subjects and covers the main modern reliability analysis techniques thoroughly. These include: the graphical analysis of life data, maximum likelihood estimation and bayesian likelihood estimation. Throughout the emphasis is on the practicalities of the subject with numerous examples drawn from industrial and engineering settings.




System Reliability Theory


Book Description

A comprehensive introduction to reliability analysis. The first section provides a thorough but elementary prologue to reliability theory. The latter half comprises more advanced analytical tools including Markov processes, renewal theory, life data analysis, accelerated life testing and Bayesian reliability analysis. Features numerous worked examples. Each chapter concludes with a selection of problems plus additional material on applications.




Statistical Models and Methods for Lifetime Data


Book Description

Praise for the First Edition "An indispensable addition to any serious collection on lifetime data analysis and . . . a valuable contribution to the statistical literature. Highly recommended . . ." -Choice "This is an important book, which will appeal to statisticians working on survival analysis problems." -Biometrics "A thorough, unified treatment of statistical models and methods used in the analysis of lifetime data . . . this is a highly competent and agreeable statistical textbook." -Statistics in Medicine The statistical analysis of lifetime or response time data is a key tool in engineering, medicine, and many other scientific and technological areas. This book provides a unified treatment of the models and statistical methods used to analyze lifetime data. Equally useful as a reference for individuals interested in the analysis of lifetime data and as a text for advanced students, Statistical Models and Methods for Lifetime Data, Second Edition provides broad coverage of the area without concentrating on any single field of application. Extensive illustrations and examples drawn from engineering and the biomedical sciences provide readers with a clear understanding of key concepts. New and expanded coverage in this edition includes: * Observation schemes for lifetime data * Multiple failure modes * Counting process-martingale tools * Both special lifetime data and general optimization software * Mixture models * Treatment of interval-censored and truncated data * Multivariate lifetimes and event history models * Resampling and simulation methodology




Reliability, Life Testing and the Prediction of Service Lives


Book Description

This book is intended for students and practitioners who have had a calculus-based statistics course and who have an interest in safety considerations such as reliability, strength, and duration-of-load or service life. Many persons studying statistical science will be employed professionally where the problems encountered are obscure, what should be analyzed is not clear, the appropriate assumptions are equivocal, and data are scant. In this book there is no disclosure with many of the data sets what type of investigation should be made or what assumptions are to be used.




The Statistical Analysis of Failure Time Data


Book Description

Contains additional discussion and examples on left truncationas well as material on more general censoring and truncationpatterns. Introduces the martingale and counting process formulation swillbe in a new chapter. Develops multivariate failure time data in a separate chapterand extends the material on Markov and semi Markovformulations. Presents new examples and applications of data analysis.




Mathematical and Statistical Methods in Reliability


Book Description

This book contains extended versions of carefully selected and reviewed papers presented at the Third International Conference on Mathematical Methods in Reliability, held in Norway in 2002. It provides an overview of current research activities in reliability theory. The authors are all leading experts in the field. Readership: Graduate students, academics and professionals in probability & statistics, reliability analysis, survival analysis, industrial engineering, software engineering, operations research and applied mathematics research.




Probability Distributions Used in Reliability Engineering


Book Description

The book provides details on 22 probability distributions. Each distribution section provides a graphical visualization and formulas for distribution parameters, along with distribution formulas. Common statistics such as moments and percentile formulas are followed by likelihood functions and in many cases the derivation of maximum likelihood estimates. Bayesian non-informative and conjugate priors are provided followed by a discussion on the distribution characteristics and applications in reliability engineering.