Methods in Plant Electron Microscopy and Cytochemistry


Book Description

Hands-on experimentalists describe the cutting-edge microscopical methods needed for the effective study of plant cell biology today. These powerful techniques, all described in great detail to ensure successful experimental results, range from light microscope cytochemistry, autoradiography, and immunocytochemistry, to recent developments in fluorescence, confocal, and dark-field microscopies. Important advances in both conventional and scanning electron microscopies are also fully developed, together with such state-of-the-art ancillary techniques as high-resolution autoradiography, immunoelectron microscopy, X-ray microanalysis, and electron systems imaging. Easy-to-use and up-to-date, Methods in Plant Electron Microscopy and Cytochemistry offers today's plant scientists a first class collection of readily reproducible light and electron microscopical methods that will prove the new standard for all working in the field.




Electron Microscopy of Plant Cells


Book Description

Electron Microscopy of Plant Cells serves as manual or reference of major modern techniques used to prepare plant material for transmission and scanning electron microscopy. There have been other books that generally discuss electron microscope methodology. This book focuses on problem areas encountered through the presence of tough cell walls and large central vacuole. It details preparative techniques for botanical specimens. Each of the nine chapters of this book covers the basic principles, useful applications, and reliable procedures used on the method of electron microscopy. Other topics discussed in each chapter include the general preparation and straining of thin sections, quantitative morphological analysis, and enzyme cytochemistry. This book also explains the immunogold labelling, rapid-freezing methods, and ambient- and low-temperature scanning electron microscopy among others. This book will be invaluable to general scientists, biologists, botanists, and students specializing in plant anatomy.




Biological Electron Microscopy


Book Description

In this practical text, the author covers the fundamentals of biological electron microscopy - including fixation, instrumentation, and darkroom work - to provide an excellent introduction to the subject for the advanced undergraduate or graduate student.




Electron Microscopy


Book Description

New edition of an introductory reference that covers all of the important aspects of electron microscopy from a biological perspective, including theory of scanning and transmission; specimen preparation; darkroom, digital imaging, and image analysis; laboratory safety; interpretation of images; and an atlas of ultrastructure. Generously illustrated with bandw line drawings and photographs. Annotation copyrighted by Book News, Inc., Portland, OR




Histochemistry of Single Molecules


Book Description

This volume details histochemical techniques for the detection of specific molecules or metabolic processes, both at light and electron microscopy. Chapters are divided into seven sections covering Vital histochemistry, Carbohydrate histochemistry, Protein histochemistry, Lipid histochemistry, Nuclear histochemistry, Plant histochemistry and Histochemistry for Nanoscience. Written in the successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. The volume also contains three discursive chapters on Histochemistry in advanced cytometry, Lectins and Detection of molecules in plant cell walls by fluorescence microscopy. Authoritative and cutting-edge, Histochemistry of Single Molecules: Methods and Protocols, Second Edition aims to be a useful practical guide for researchers to help further their study in this field.




Cryotechniques in Biological Electron Microscopy


Book Description

To preserve tissue by freezing is an ancient concept going back pre sumably to the practice of ice-age hunters. At first glance, it seems as simple as it is attractive: the dynamics of life are frozen in, nothing is added and nothing withdrawn except thermal energy. Thus, the result should be more life-like than after poisoning, tan ning and drying a living cell as we may rudely call the conventional preparation of specimens for electron microscopy. Countless mishaps, however, have taught electron microscopists that cryotechniques too are neither simple nor necessarily more life-like in their outcome. Not too long ago, experts in cryotechniques strictly denied that a cell could truly be vitrified, i.e. that all the solutes and macro molecules could be fixed within non-crystalline, glass-like solid water without the dramatic shifts and segregation effects caused by crystallization. We now know that vitrification is indeed pos sible. Growing insight into the fundamentals of the physics of water and ice, as well as increasing experience of how to cool cells rapidly enough have enlivened the interest in cryofixation and pro duced a wealth of successful applications.




Principles and Techniques of Electron Microscopy


Book Description

Quantitative mapping with the electron microscope; Photographic aspects of electron microscopy; Environmental devices in electron microscopy; Optical diffractometry; The analytical electron microscope, emma-4.










Biological Field Emission Scanning Electron Microscopy, 2 Volume Set


Book Description

The go‐to resource for microscopists on biological applications of field emission gun scanning electron microscopy (FEGSEM) The evolution of scanning electron microscopy technologies and capability over the past few years has revolutionized the biological imaging capabilities of the microscope—giving it the capability to examine surface structures of cellular membranes to reveal the organization of individual proteins across a membrane bilayer and the arrangement of cell cytoskeleton at a nm scale. Most notable are their improvements for field emission scanning electron microscopy (FEGSEM), which when combined with cryo-preparation techniques, has provided insight into a wide range of biological questions including the functionality of bacteria and viruses. This full-colour, must-have book for microscopists traces the development of the biological field emission scanning electron microscopy (FEGSEM) and highlights its current value in biological research as well as its future worth. Biological Field Emission Scanning Electron Microscopy highlights the present capability of the technique and informs the wider biological science community of its application in basic biological research. Starting with the theory and history of FEGSEM, the book offers chapters covering: operation (strengths and weakness, sample selection, handling, limitations, and preparation); Commercial developments and principals from the major FEGSEM manufacturers (Thermo Scientific, JEOL, HITACHI, ZEISS, Tescan); technical developments essential to bioFEGSEM; cryobio FEGSEM; cryo-FIB; FEGSEM digital-tomography; array tomography; public health research; mammalian cells and tissues; digital challenges (image collection, storage, and automated data analysis); and more. Examines the creation of the biological field emission gun scanning electron microscopy (FEGSEM) and discusses its benefits to the biological research community and future value Provides insight into the design and development philosophy behind current instrument manufacturers Covers sample handling, applications, and key supporting techniques Focuses on the biological applications of field emission gun scanning electron microscopy (FEGSEM), covering both plant and animal research Presented in full colour An important part of the Wiley-Royal Microscopical Series, Biological Field Emission Scanning Electron Microscopy is an ideal general resource for experienced academic and industrial users of electron microscopy—specifically, those with a need to understand the application, limitations, and strengths of FEGSEM.