Methods of Geometric Analysis in Extension and Trace Problems


Book Description

The book presents a comprehensive exposition of extension results for maps between different geometric objects and of extension-trace results for smooth functions on subsets with no a priori differential structure (Whitney problems). The account covers development of the area from the initial classical works of the first half of the 20th century to the flourishing period of the last decade. Seemingly very specific these problems have been from the very beginning a powerful source of ideas, concepts and methods that essentially influenced and in some cases even transformed considerable areas of analysis. Aside from the material linked by the aforementioned problems the book also is unified by geometric analysis approach used in the proofs of basic results. This requires a variety of geometric tools from convex and combinatorial geometry to geometry of metric space theory to Riemannian and coarse geometry and more. The necessary facts are presented mostly with detailed proofs to make the book accessible to a wide audience.




Methods of Geometric Analysis in Extension and Trace Problems


Book Description

The book presents a comprehensive exposition of extension results for maps between different geometric objects and of extension-trace results for smooth functions on subsets with no a priori differential structure (Whitney problems). The account covers development of the area from the initial classical works of the first half of the 20th century to the flourishing period of the last decade. Seemingly very specific these problems have been from the very beginning a powerful source of ideas, concepts and methods that essentially influenced and in some cases even transformed considerable areas of analysis. Aside from the material linked by the aforementioned problems the book also is unified by geometric analysis approach used in the proofs of basic results. This requires a variety of geometric tools from convex and combinatorial geometry to geometry of metric space theory to Riemannian and coarse geometry and more. The necessary facts are presented mostly with detailed proofs to make the book accessible to a wide audience.




Methods of Geometric Analysis in Extension and Trace Problems


Book Description

The book presents a comprehensive exposition of extension results for maps between different geometric objects and of extension-trace results for smooth functions on subsets with no a priori differential structure (Whitney problems). The account covers development of the area from the initial classical works of the first half of the 20th century to the flourishing period of the last decade. Seemingly very specific these problems have been from the very beginning a powerful source of ideas, concepts and methods that essentially influenced and in some cases even transformed considerable areas of analysis. Aside from the material linked by the aforementioned problems the book also is unified by geometric analysis approach used in the proofs of basic results. This requires a variety of geometric tools from convex and combinatorial geometry to geometry of metric space theory to Riemannian and coarse geometry and more. The necessary facts are presented mostly with detailed proofs to make the book accessible to a wide audience.




Methods of Geometric Analysis in Extension and Trace Problems


Book Description

The book presents a comprehensive exposition of extension results for maps between different geometric objects and of extension-trace results for smooth functions on subsets with no a priori differential structure (Whitney problems). The account covers development of the area from the initial classical works of the first half of the 20th century to the flourishing period of the last decade. Seemingly very specific these problems have been from the very beginning a powerful source of ideas, concepts and methods that essentially influenced and in some cases even transformed considerable areas of analysis. Aside from the material linked by the aforementioned problems the book also is unified by geometric analysis approach used in the proofs of basic results. This requires a variety of geometric tools from convex and combinatorial geometry to geometry of metric space theory to Riemannian and coarse geometry and more. The necessary facts are presented mostly with detailed proofs to make the book accessible to a wide audience.




Geometric Harmonic Analysis I


Book Description

This monograph presents a comprehensive, self-contained, and novel approach to the Divergence Theorem through five progressive volumes. Its ultimate aim is to develop tools in Real and Harmonic Analysis, of geometric measure theoretic flavor, capable of treating a broad spectrum of boundary value problems formulated in rather general geometric and analytic settings. The text is intended for researchers, graduate students, and industry professionals interested in applications of harmonic analysis and geometric measure theory to complex analysis, scattering, and partial differential equations. Volume I establishes a sharp version of the Divergence Theorem (aka Fundamental Theorem of Calculus) which allows for an inclusive class of vector fields whose boundary trace is only assumed to exist in a nontangential pointwise sense.




Lipschitz Functions


Book Description

The aim of this book is to present various facets of the theory and applications of Lipschitz functions, starting with classical and culminating with some recent results. Among the included topics we mention: characterizations of Lipschitz functions and relations with other classes of functions, extension results for Lipschitz functions and Lipschitz partitions of unity, Lipschitz free Banach spaces and their applications, compactness properties of Lipschitz operators, Bishop-Phelps type results for Lipschitz functionals, applications to best approximation in metric and in metric linear spaces, Kantorovich-Rubinstein norm and applications to duality in the optimal transport problem, Lipschitz mappings on geodesic spaces. The prerequisites are basic results in real analysis, functional analysis, measure theory (including vector measures) and topology, which, for reader's convenience, are surveyed in the first chapter of the book.




Maximal Function Methods for Sobolev Spaces


Book Description

This book discusses advances in maximal function methods related to Poincaré and Sobolev inequalities, pointwise estimates and approximation for Sobolev functions, Hardy's inequalities, and partial differential equations. Capacities are needed for fine properties of Sobolev functions and characterization of Sobolev spaces with zero boundary values. The authors consider several uniform quantitative conditions that are self-improving, such as Hardy's inequalities, capacity density conditions, and reverse Hölder inequalities. They also study Muckenhoupt weight properties of distance functions and combine these with weighted norm inequalities; notions of dimension are then used to characterize density conditions and to give sufficient and necessary conditions for Hardy's inequalities. At the end of the book, the theory of weak solutions to the p p-Laplace equation and the use of maximal function techniques is this context are discussed. The book is directed to researchers and graduate students interested in applications of geometric and harmonic analysis in Sobolev spaces and partial differential equations.




Unveiling Dynamics and Complexity


Book Description

This book constitutes the refereed proceedings of the 13th Conference on Computability in Europe, CiE 2017, held in Turku, Finland, in June 2017. The 24 revised full papers and 12 invited papers were carefully reviewed and selected from 69 submissions. The conference CiE 2016 has six special sessions, namly: algorithmics for biology; combinatorics and algorithmics on words; computability in analysis, algebra, and geometry; cryptography and information theory; formal languages and automata theory; and history and philosophy of computing.




Current Trends in Analysis, its Applications and Computation


Book Description

This volume contains the contributions of the participants of the 12th ISAAC congress which was held at the University of Aveiro, Portugal, from July 29 to August 3, 2019. These contributions originate from the following sessions: Applications of dynamical systems theory in biology, Complex Analysis and Partial Differential Equations, Complex Geometry, Complex Variables and Potential Theory, Constructive Methods in the Theory of Composite and Porous Media, Function Spaces and Applications, Generalized Functions and Applications, Geometric & Regularity Properties of Solutions to Elliptic and Parabolic PDEs, Geometries Defined by Differential Forms, Partial Differential Equations on Curved Spacetimes, Partial Differential Equations with Nonstandard Growth, Quaternionic and Clifford Analysis, Recent Progress in Evolution Equations, Wavelet theory and its Related Topics.




Nigel J. Kalton Selecta


Book Description

This is the second part of a two volume anthology comprising a selection of 49 articles that illustrate the depth, breadth and scope of Nigel Kalton’s research. Each article is accompanied by comments from an expert on the respective topic, which serves to situate the article in its proper context, to successfully link past, present and hopefully future developments of the theory and to help readers grasp the extent of Kalton’s accomplishments. Kalton’s work represents a bridge to the mathematics of tomorrow, and this book will help readers to cross it. Nigel Kalton (1946-2010) was an extraordinary mathematician who made major contributions to an amazingly diverse range of fields over the course of his career.