Metrical Theory of Continued Fractions


Book Description

The book is essentially based on recent work of the authors. In order to unify and generalize the results obtained so far, new concepts have been introduced, e.g., an infinite order chain representation of the continued fraction expansion of irrationals, the conditional measures associated with, and the extended random variables corresponding to that representation. Also, such procedures as singularization and insertion allow to obtain most of the continued fraction expansions related to the regular continued fraction expansion. The authors present and prove with full details for the first time in book form, the most recent developments in solving the celebrated 1812 Gauss' problem which originated the metrical theory of continued fractions. At the same time, they study exhaustively the Perron-Frobenius operator, which is of basic importance in this theory, on various Banach spaces including that of functions of bounded variation on the unit interval. The book is of interest to research workers and advanced Ph.D. students in probability theory, stochastic processes and number theory.




Metrical Theory of Continued Fractions


Book Description

This monograph is intended to be a complete treatment of the metrical the ory of the (regular) continued fraction expansion and related representations of real numbers. We have attempted to give the best possible results known so far, with proofs which are the simplest and most direct. The book has had a long gestation period because we first decided to write it in March 1994. This gave us the possibility of essentially improving the initial versions of many parts of it. Even if the two authors are different in style and approach, every effort has been made to hide the differences. Let 0 denote the set of irrationals in I = [0,1]. Define the (reg ular) continued fraction transformation T by T (w) = fractional part of n 1/w, w E O. Write T for the nth iterate of T, n E N = {O, 1, ... }, n 1 with TO = identity map. The positive integers an(w) = al(T - (W)), n E N+ = {1,2··· }, where al(w) = integer part of 1/w, w E 0, are called the (regular continued fraction) digits of w. Writing . for arbitrary indeterminates Xi, 1 :::; i :::; n, we have w = lim [al(w),··· , an(w)], w E 0, n--->oo thus explaining the name of T. The above equation will be also written as w = lim [al(w), a2(w),···], w E O.




Continued Fractions


Book Description

This book is the first authoritative and up-to-date survey of the history of Iraq from earliest times to the present in any language. It presents a concise narrative of the rich and varied history of this land, drawing on political, social, economic, artistic, technological, and intellectual material. It also includes excerpts from works of ancient, medieval, and modern literature written in Iraq, some of which are translated for the first time into English. The final chapters provide an introduction to the history of archaeology in Iraq, set in the wider context of the development of archaeology into a scientific discipline. A special section highlights selected objects from the Iraq Museum, with emphasis on their cultural significance and current status in the aftermath of the looting in April 2003. The last chapter offers a unique guide to the complex international and national legal regimes for the protection of cultural heritage. The American-led invasion and occupation of Iraq are a turning point in Iraq's modern history, with important cultural consequences for all periods of its past. For all who seek to understand more fully the current situation, this book includes discussion of cultural and legal issues of the war and occupation, placing recent events in their full context.







Probability Theory and Mathematical Statistics. Vol. 1


Book Description

No detailed description available for "GRIGELIONIS: PROCEEDINGS OF THE FIFTH VILNIUS CONFERE E-BOOK".




Ergodic Theory of Numbers


Book Description

Ergodic Theory of Numbers looks at the interaction between two fields of mathematics: number theory and ergodic theory (as part of dynamical systems). It is an introduction to the ergodic theory behind common number expansions, like decimal expansions, continued fractions, and many others. However, its aim does not stop there. For undergraduate students with sufficient background knowledge in real analysis and graduate students interested in the area, it is also an introduction to a "dynamical way of thinking". The questions studied here are dynamical as well as number theoretical in nature, and the answers are obtained with the help of ergodic theory. Attention is focused on concepts like measure-preserving, ergodicity, natural extension, induced transformations, and entropy. These concepts are then applied to familiar expansions to obtain old and new results in an elegant and straightforward manner. What it means to be ergodic and the basic ideas behind ergodic theory will be explained along the way. The subjects covered vary from classical to recent, which makes this book appealing to researchers as well as students.




Mathematical Constants


Book Description

Steven Finch provides 136 essays, each devoted to a mathematical constant or a class of constants, from the well known to the highly exotic. This book is helpful both to readers seeking information about a specific constant, and to readers who desire a panoramic view of all constants coming from a particular field, for example, combinatorial enumeration or geometric optimization. Unsolved problems appear virtually everywhere as well. This work represents an outstanding scholarly attempt to bring together all significant mathematical constants in one place.




Continued Fractions


Book Description

The Euclidean algorithm is one of the oldest in mathematics, while the study of continued fractions as tools of approximation goes back at least to Euler and Legendre. While our understanding of continued fractions and related methods for simultaneous diophantine approximation has burgeoned over the course of the past decade and more, many of the results have not been brought together in book form. Continued fractions have been studied from the perspective of number theory, complex analysis, ergodic theory, dynamic processes, analysis of algorithms, and even theoretical physics, which has further complicated the situation.This book places special emphasis on continued fraction Cantor sets and the Hausdorff dimension, algorithms and analysis of algorithms, and multi-dimensional algorithms for simultaneous diophantine approximation. Extensive, attractive computer-generated graphics are presented, and the underlying algorithms are discussed and made available.




Encyclopaedia of Mathematics


Book Description




Encyclopaedia of Mathematics


Book Description

This ENCYCLOPAEDIA OF MATHEMATICS aims to be a reference work for all parts of mathematics. It is a translation with updates and editorial comments of the Soviet Mathematical En cyclopaedia published by 'Soviet Encyclopaedia Publishing House' in five volumes in 1977 - 1985. The annotated translation consists of ten volumes including a special index volume. There are three kinds of articles in this ENCYCLOPAEDIA. First of all there are survey-type articles dealing with the various main directions in mathematics (where a rather fine subdivision has been used). The main requirement for these articles has been that they should give a reasonably complete up-to-date account of the current state of affairs in these areas and that they should be maximally accessible. On the whole, these articles should be understandable to mathe matics students in their first specialization years, to graduates from other mathematical areas and, depending on the specific subject, to specialists in other domains of science, engineers and teachers of mathematics. These articles treat their material at a fairly general level and aim to give an idea of the kind of problems, techniques and concepts involved in the area in question. They also contain background and motivation rather than precise statements of precise theorems with detailed definitions and technical details on how to carry out proofs and constructions. The second kind of article, of medium length, contains more detailed concrete problems, results and techniques.