Micro and Nano Flow Systems for Bioanalysis


Book Description

Micro and Nano Flow Systems for Bioanalysis addresses the latest developments in biomedical engineering at very small scales. It shows how organic systems require multi-scale understanding in the broadest sensewhether the approach is experimental or mathematical, and whether the physiological state is healthy or diseased. Micro-and nano-fluidics represent key areas of translational research in which state-of-the-art engineering processes and devices are applied to bedside monitoring and treatment. By applying conventional micro- and nano-engineering to complex organic solids, fluids, and their interactions, leading researchers from throughout the world describe methods and techniques with great potential for use in medicine and clinical practice. Coverage includes the seeming plethora of new, fine-scale optical methods for measuring blood flow as well as endothelial activation and interaction with tissue. Generic areas of modeling and bioelectronics are also considered. In keeping with the recurring theme of medicine and clinical practice, approximately half of the chapters focus on the specific application of micro- and nano- flow systems to the understanding and treatment of cancer and cardiovascular diseases. This book developed from an Expert Overview Session on "Micro & Nano Flows in Medicine: the way ahead" at the 3rd Micro and Nano Flows Conference (MNF2011) held in Thessaloniki, Greece. Additional chapters were included to enhance the international, state-of-the-art coverage.




Micro- and Nanoflows


Book Description

This book describes physical, mathematical and experimental methods to model flows in micro- and nanofluidic devices. It takes in consideration flows in channels with a characteristic size between several hundreds of micrometers to several nanometers. Methods based on solving kinetic equations, coupled kinetic-hydrodynamic description, and molecular dynamics method are used. Based on detailed measurements of pressure distributions along the straight and bent microchannels, the hydraulic resistance coefficients are refined. Flows of disperse fluids (including disperse nanofluids) are considered in detail. Results of hydrodynamic modeling of the simplest micromixers are reported. Mixing of fluids in a Y-type and T-type micromixers is considered. The authors present a systematic study of jet flows, jets structure and laminar-turbulent transition. The influence of sound on the microjet structure is considered. New phenomena associated with turbulization and relaminarization of the mixing layer of microjets are discussed. Based on the conducted experimental investigations, the authors propose a chart of microjet flow regimes. When addressing the modeling of microflows of nanofluids, the authors show where conventional hydrodynamic approaches can be applied and where more complicated models are needed, and they analyze the hydrodynamic stability of the nanofluid flows. The last part of the book is devoted the statistical theory of the transport processes in fluids under confined conditions. The authors present the constitutive relations and the formulas for transport coefficients. In conclusion the authors present a rigorous analysis of the viscosity and diffusion in nanochannels and in porous media.




Process Intensification


Book Description

Process Intensification: Engineering for Efficiency, Sustainability and Flexibility is the first book to provide a practical working guide to understanding process intensification (PI) and developing successful PI solutions and applications in chemical process, civil, environmental, energy, pharmaceutical, biological, and biochemical systems. Process intensification is a chemical and process design approach that leads to substantially smaller, cleaner, safer, and more energy efficient process technology. It improves process flexibility, product quality, speed to market and inherent safety, with a reduced environmental footprint. This book represents a valuable resource for engineers working with leading-edge process technologies, and those involved research and development of chemical, process, environmental, pharmaceutical, and bioscience systems. - No other reference covers both the technology and application of PI, addressing fundamentals, industry applications, and including a development and implementation guide - Covers hot and high growth topics, including emission prevention, sustainable design, and pinch analysis - World-class authors: Colin Ramshaw pioneered PI at ICI and is widely credited as the father of the technology




Selected Papers from the ISTEGIM'19


Book Description

This Special Issue compiles 11 scientific works that were presented during the International Symposium on Thermal Effects in Gas Flow in Microscale, ISTEGIM 2019, held in Ettlingen, Germany, in October 2019. This symposium was organized in the framework of the MIGRATE Network, an H2020 Marie Skłodowska-Curie European Training Network that ran from November 2015 to October 2019 (www.migrate2015.eu). MIGRATE intends to address some of the current challenges in innovation that face the European industry with regard to heat and mass transfer in gas-based microscale processes. The papers collected in this book focus on fundamental issues that are encountered in microfluidic systems involving gases, such as the analysis of gas–surface interactions under rarefied conditions, the development of innovative integrated microsensors for airborne pollutants, new experimental techniques for the measurement of local quantities in miniaturized devices and heat transfer issues inside microchannels. The variety of topics addressed in this book emphasizes that multi-disciplinarity is the real common thread of the current applied research in microfluidics. We hope that this book will help to stimulate early-stage researchers who are working in microfluidics all around the world. This book is dedicated to them!




Micro/Nano Devices for Blood Analysis


Book Description

The development of micro- and nanodevices for blood analysis is an interdisciplinary subject that demands the integration of several research fields, such as biotechnology, medicine, chemistry, informatics, optics, electronics, mechanics, and micro/nanotechnologies. Over the last few decades, there has been a notably fast development in the miniaturization of mechanical microdevices, later known as microelectromechanical systems (MEMS), which combine electrical and mechanical components at a microscale level. The integration of microflow and optical components in MEMS microdevices, as well as the development of micropumps and microvalves, have promoted the interest of several research fields dealing with fluid flow and transport phenomena happening in microscale devices. Microfluidic systems have many advantages over their macroscale counterparts, offering the ability to work with small sample volumes, providing good manipulation and control of samples, decreasing reaction times, and allowing parallel operations in one single step. As a consequence, microdevices offer great potential for the development of portable and point-of-care diagnostic devices, particularly for blood analysis. Moreover, the recent progress in nanotechnology has contributed to its increasing popularity, and has expanded the areas of application of microfluidic devices, including in the manipulation and analysis of flows on the scale of DNA, proteins, and nanoparticles (nanoflows). In this Special Issue, we invited contributions (original research papers, review articles, and brief communications) that focus on the latest advances and challenges in micro- and nanodevices for diagnostics and blood analysis, micro- and nanofluidics, technologies for flow visualization, MEMS, biochips, and lab-on-a-chip devices and their application to research and industry. We hope to provide an opportunity to the engineering and biomedical community to exchange knowledge and information and to bring together researchers who are interested in the general field of MEMS and micro/nanofluidics and, especially, in its applications to biomedical areas.




Passive Micromixers


Book Description

This book is a printed edition of the Special Issue " Passive Micromixers" that was published in Micromachines




Heat Transfer


Book Description

In the wake of energy crisis due to rapid growth of industries, the efficient heat transfer could play a vital role in energy saving. Industries, household equipment, transportation, offices, etc., all are dependent on heat exchanging equipment. Considering this, the book has incorporated different chapters on heat transfer phenomena, analytical and experimental heat transfer investigations, heat transfer enhancement and applications.




Microflows and Nanoflows


Book Description

Subject area has witnessed explosive growth during the last decade and the technology is progressing at an astronomical rate. Previous edition was first to focus exclusively on flow physics within microdevices. It sold over 900 copies in North America since 11/01. New edition is 40 percent longer, with four new chapters on recent topics including Nanofluidics.




Critical Heat Flux in Flow Boiling in Microchannels


Book Description

This Brief concerns the important problem of critical heat flux in flow boiling in microchannels. A companion edition in the SpringerBrief Subseries on Thermal Engineering and Applied Science to “Heat Transfer and Pressure Drop in Flow Boiling in Microchannels,” by the same author team, this volume is idea for professionals, researchers, and graduate students concerned with electronic cooling.




Experimental and Numerical Studies in Biomedical Engineering


Book Description

The term ‘biomedical engineering’ refers to the application of the principles and problem-solving techniques of engineering to biology and medicine. Biomedical engineering is an interdisciplinary branch, as many of the problems health professionals are confronted with have traditionally been of interest to engineers because they involve processes that are fundamental to engineering practice. Biomedical engineers employ common engineering methods to comprehend, modify, or control biological systems, and to design and manufacture devices that can assist in the diagnosis and therapy of human diseases. This Special Issue of Fluids aims to be a forum for scientists and engineers from academia and industry to present and discuss recent developments in the field of biomedical engineering. It contains papers that tackle, both numerically (Computational Fluid Dynamics studies) and experimentally, biomedical engineering problems, with a diverse range of studies focusing on the fundamental understanding of fluid flows in biological systems, modelling studies on complex rheological phenomena and molecular dynamics, design and improvement of lab-on-a-chip devices, modelling of processes inside the human body as well as drug delivery applications. Contributions have focused on problems associated with subjects that include hemodynamical flows, arterial wall shear stress, targeted drug delivery, FSI/CFD and Multiphysics simulations, molecular dynamics modelling and physiology-based biokinetic models.