Microbes in Soil and Their Agricultural Prospects


Book Description

The book Microbes in Soil and Their Agricultural Prospects is a collection of advantageous, informative, simulative and holistic viewpoints presenting basic and applied aspects of microbial functioning in soil. This book covers physiological, biochemical and molecular mechanisms of microbiomes pertaining to the production of available nitrogen (nitrogen fixation), phosphorus (P mobilization) and plant-growth promoting hormones for adaptation in agricultural soil. Responses between microbiomes and plants (known as plant-microbe interaction) corresponding to signal molecules and plant reactions to bacterial quorum sensing have been intricately presented as well. This book covers most of the agriculturally important microbes (Bacteria, Frankia, Burkholederia, Cyanobacteria, Arbuscular Mycorrhizal (AM) fungi, Bacteriophages, Trichoderma). It addresses various issues in agricultural practices to make it more understandable for various levels of academia. Analysis of microbial diversity and advances in development of microbial fertilizers have also been incorporated to introduce young researchers with biofertilizer. This expert compilation of data analyzes most of the microorganisms supporting soil fertility and crop productivity that is of significant value for sustainable agronomic practices. It is invaluable not only for experienced scientists, research leaders, and agriculturalists, but also undergraduate, postgraduate and postdoctoral researchers beginning their careers. Each chapter in this book has been a contribution from a qualified teachers or researchers of multiple expertise. The chapters are concentrated on microbial metabolism and its agricultural prospects. Concerted efforts have been made to make a quality compilation and presentation of microbiomes in soil. A lot of common queries and practices have been addressed to make it more interesting as well. Microbes in Soil and Their Agricultural Prospects will certainly serve as an invaluable, suitable and sustainable resource for students, teachers, and various scientists interested in sustainable agricultural practices for production of healthy foods.




Microbes in Land Use Change Management


Book Description

Microbes in Land Use Change Management details the various roles of microbial resources in management of land uses and how the microbes can be used for the source of income due to their cultivation for the purpose of biomass and bioenergy production. Using various techniques, the disturbed and marginal lands may also be restored eco-friendly in present era to fulfil the feeding needs of mankind around the globe. Microbes in Land Use Change Management provides standard and up to date information towards the land use change management using various microbial technologies to enhance the productivity of agriculture. Needless to say that Microbes in Land Use Change Management also considers the areas including generation of alternative energy sources, restoration of degraded and marginal lands, mitigation of global warming gases and next generation -omics technique etc. Land use change affects environment conditions and soil microbial community. Microbial population and its species diversity have influence in maintaining ecosystem balance. The study of changes of microbial population provides an idea about the variation occurring in a specific area and possibilities of restoration. Meant for a multidisciplinary audience Microbes in Land Use Change Management shows the need of next-generation omics technologies to explore microbial diversity. - Describes the role of microbes in generation of alternative source of energy - Gives recent information related to various microbial technology and their diversified applications - Provides thorough insight in the problems related to landscape dynamics, restoration of soil, reclamation of lands mitigation of global warming gases etc. eco-friendly way using versatility of microbes - Includes microbial tools and technology in reclamation of degraded, disturbed and marginal lands, mitigation of global warming gases




Advances in Soil Microbiology: Recent Trends and Future Prospects


Book Description

This book presents a comprehensive collection of articles illustrating the importance of microbial community structure and function for ecosystem sustainability and environmental reclamation. It addresses a diverse range of topics, including microbial diversity, physiology, genomics, ecosystem function, interaction, metabolism, and the fruitful use of microbial communities for crop productivity and environmental remediation. In addition, the book explores issues ranging from general concepts on the diversity of microorganisms in soil, and ecosystem function to the evolution and taxonomy of soil microbiota, with future prospects. It covers cutting-edge methods in soil microbial ecological studies, rhizosphere microflora, the role of organic matter in plant productivity, biological nitrogen fixation and its genetics, microbial transformation of plant nutrients in soil, plant-growth-promoting rhizobacteria, and organic matter transformation. The book also discusses the application of microbes in biodegradation of xenobiotic contaminants. It covers bio-fertilizers and their role in sustainable agriculture and soil health, biological control of insect pests and plant pathogens, and the latest tools of omics in soil microbiology, i.e. genomics, proteomics, transcriptomics and metabolomics, which offer pioneering approaches to the exploration of microbial structure and function.




Plant, Soil and Microbes in Tropical Ecosystems


Book Description

This book describes the multitude of interactions between plant, soil, and micro-organisms. It emphasizes on how growth and development in plants, starting from seed germination, is heavily influenced by the soil type. It describes the interactions established by plants with soil and inhabitant microbial community. The chapters describe how plants selectively promote certain microorganisms in the rhizospheric ecozone to derive multifarious benefits such as nutrient acquisition and protection from diseases. The diversity of these rhizospheric microbes and their interactions with plants largely depend on plant genotype, soils attributes, and several abiotic and biotic factors. Most of the studies concerned with plant–microbe interaction are focused on temperate regions, even though the tropical ecosystems are more diverse and need more attention. Therefore, it is crucial to understand how soil type and climatic conditions influence the plant–soil–microbes interaction in the tropics. Considering the significance of the subject, the present volume is designed to cover the most relevant aspects of rhizospheric microbial interactions in tropical ecosystems. Chapters include aspects related to the diversity of rhizospheric microbes, as well as modern tools and techniques to assess the rhizospheric microbiomes and their functional roles. The book also covers applications of rhizospheric microbes and evaluation of prospects improving agricultural practice and productivity through the use of microbiome technologies. This book will be extremely interesting to microbiologists, plant biologists, and ecologists.




Advances in Soil Microbiology: Recent Trends and Future Prospects


Book Description

This book presents a comprehensive collection of articles illustrating the importance of microbial community structure and function for ecosystem sustainability and environmental reclamation. It addresses a diverse range of topics, including microbial diversity, physiology, genomics, ecosystem function, interaction, metabolism, and the fruitful use of microbial communities for crop productivity and environmental remediation. In addition, the book explores issues ranging from general concepts on the diversity of microorganisms in soil, and ecosystem function, to the evolution and taxonomy of soil microbiota, with future prospects. It covers cutting-edge methods in soil microbial ecological studies, rhizosphere microflora, the role of organic matter in plant productivity, biological nitrogen fixation and its genetics, microbial transformation of plant nutrients in soil, plant-growth-promoting rhizobacteria, and organic matter transformation. The book also discusses the application of microbes in biodegradation of xenobiotic contaminants. It covers bio-fertilizers and their role in sustainable agriculture and soil health, biological control of insect pests and plant pathogens, and the latest tools of omics in soil microbiology, i.e. genomics, proteomics, transcriptomics and metabolomics, which offer pioneering approaches to the exploration of microbial structure and function.




Agriculturally Important Microbes for Sustainable Agriculture


Book Description

This book is a compilation of case studies from different countries and covers contemporary with future prospective for sustainable development of agriculture. The book highlights the real-world as well as future generation situations facing the challenges for the twenty first century will be production of sufficient food and highlights the strengths, weaknesses and opportunities, to meet the needs of fast growing population it is imperative to increase agricultural productivity in an environmentally sustainable manner. Due to imbalanced use of chemical fertilizers and agrochemicals has a considerable negative impact on economy and environmental sustainability of nation, for the sustainable alternative means to solve these problems, the efficient utilization of biological agents have been extensively studied. Naturally existing plant-microbe-environment interactions are utilized in many ways for enhancing plant productivity. A greater understanding of how plants and microbes live together and benefit each other can therefore provide new strategies to improve plant productivity, in most sustainable way. To achieve the objective of sustainable agricultural practices there is a need for understanding both basic and applied aspects of agriculturally important microorganisms. Focus needs to be on transforming agricultural systems from nutrient deficient to nutrient rich soil-plant system. This book is split into two parts, with an aim to provide comprehensive description and highlight a holistic approach. It elucidated various mechanisms of nutrients solubilisation and its importance in enhancement of plant growth, nutrient content, yield of various crops and vegetables as well as soil fertility and health. Unit-1 in this book explains the importance of soil microbes in sustainable crop production. It contains chapters detailing the role and mechanism of action of soil microbes which enhances the productivity via various bio-chemical and molecular channe ls. In unit-2 the role of microbes in plant protection is elaborated. With the help of case studies of food crops, multiple ways in which soil microbes help in fighting and preventing plant diseases is explained. With the given content and layout book will be an all-inclusive collection of information, which will be useful for students, academicians, researchers working in the field of rhizospheric mechanisms, agricultural microbiology, soil microbiology, biotechnology, agronomy and sustainable agriculture and also for policy makers in the area of food security and sustainable agriculture.




Microbial Interventions in Agriculture and Environment


Book Description

Microbial communities and their functions play a crucial role in the management of ecological, environmental and agricultural health on the Earth. Microorganisms are the key identified players for plant growth promotion, plant immunization, disease suppression, induced resistance and tolerance against stresses as the indicative parameters of improved crop productivity and sustainable soil health. Beneficial belowground microbial interactions with the rhizosphere help plants mitigate drought and salinity stresses and alleviate water stresses under the unfavorable environmental conditions in the native soils. Microorganisms that are inhabitants of such environmental conditions have potential solutions for them. There are potential microbial communities that can degrade xenobiotic compounds, pesticides and toxic industrial chemicals and help remediate even heavy metals, and thus they find enormous applications in environmental remediation. Microbes have developed intrinsic metabolic capabilities with specific metabolic networks while inhabiting under specific conditions for many generations and, so play a crucial role. The book Microbial Interventions in Agriculture and Environment is an effort to compile and present a great volume of authentic, high-quality, socially-viable, practical and implementable research and technological work on microbial implications. The whole content of the volume covers protocols, methodologies, applications, interactions, role and impact of research and development aspects on microbial interventions and technological outcomes in prospects of agricultural and environmental domain including crop production, plan-soil health management, food & nutrition, nutrient recycling, land reclamation, clean water systems and agro-waste management, biodegradation & bioremediation, biomass to bioenergy, sanitation and rural livelihood security. The covered topics and sub-topics of the microbial domain have high implications for the targeted and wide readership of researchers, students, faculty and scientists working on these areas along with the agri-activists, policymakers, environmentalists, advisors etc. in the Government, industries and non-government level for reference and knowledge generation.




Microbiome Under Changing Climate


Book Description

Microbiome Under Changing Climate: Implications and Solutions presents the latest biotechnological interventions for the judicious use of microbes to ensure optimal agricultural yield. Summarizing aspects of vulnerability, adaptation and amelioration of climate impact, this book provides an important resource for understanding microbes, plants and soil in pursuit of sustainable agriculture and improved food security. It emphasizes the interaction between climate and soil microbes and their potential role in promoting advanced sustainable agricultural solutions, focusing on current research designed to use beneficial microbes such as plant growth promoting microorganisms, fungi, endophytic microbes, and more. Changes in climatic conditions influence all factors of the agricultural ecosystem, including adversely impacting yield both in terms of quantity and nutritional quality. In order to develop resilience against climatic changes, it is increasingly important to understand the effect on the native micro-flora, including the distribution of methanogens and methanotrophs, nutrient content and microbial biomass, among others. - Demonstrates the impact of climate change on secondary metabolites of plants and potential responses - Incorporates insights on microflora of inhabitant soil - Explores mitigation processes and their modulation by sustainable methods - Highlights the role of microbial technologies in agricultural sustainability




Role of Rhizospheric Microbes in Soil


Book Description

In any ecosystem, plant and microbe interaction is inevitable. They not only co-exist but also support each other’s survival and provide sustenance in stressful environments. Agro-ecosystems in many regions around the globe are affected by high temperatures, soil salinity/alkalinity, low pH and metal toxicity. High salinity and severe draught are other major constraints affecting agricultural practices and also plants in the wild. A major limiting factor affecting global agricultural productivity is environmental stresses. Apart from decreasing yield, they also have a devastating impact on plant growth. Plants battle with various kind of stresses with the help of symbiotic associations with the rhizospheric microbes. Naturally occuring plant-microbe interactions facilitate the survival of plants under these stressful conditions. The rhizosphere consists of several groups of microbes, plant growth-promoting bacteria (PGPB) is one such group of microbes that assists plants in coping with multiple stresses and also promote plant growth. These efficient microbes support the stress physiology of the plants and can be extremely useful in solving agricultural as well food- security problems. This book provides a detailed, holistic description of plant and microbe interaction. It elucidates various mechanisms of nutrient management, stress tolerance and enhanced crop productivity in the rhizosphere, discussing The rhizospheric flora and its importance in enhancement of plant growth, nutrient content, yield of various crops and vegetables as well as soil fertility and health. Divided into two volumes, the book addresses fundamentals, applications as well as research trends and new prospects for agricultural sustainability. Volume 1: Stress Management and Agricultural Sustainability, includes chapters offering a broad overview of plant stress management with the help of microbes. It also highlights the contribution of enzymatic and molecular events occurring in the rhizosphere due to plant microbe interactions, which in turn help in the biological control of plant disease and pest attacks. Various examples of plant microbe interaction in rhizospheric soil are elaborated to facilitate the development of efficient indigenous microbial consortia to enhance food and nutritional security. Providing a comprehensive information source on microbes and their role in agricultural and soil sustainability, this timely research book is of particular interest to students, academics and researchers working in the fields of microbiology, soil microbiology, biotechnology, agronomy, and the plant protection sciences, as well as for policy makers in the area of food security and sustainable agriculture.




New and Future Developments in Microbial Biotechnology and Bioengineering


Book Description

Crop Improvement through Microbial Biotechnology explains how certain techniques can be used to manipulate plant growth and development, focusing on the cross-kingdom transfer of genes to incorporate novel phenotypes in plants, including the utilization of microbes at every step, from cloning and characterization, to the production of a genetically engineered plant. This book covers microbial biotechnology in sustainable agriculture, aiming to improve crop productivity under stress conditions. It includes sections on genes encoding avirulence factors of bacteria and fungi, viral coat proteins of plant viruses, chitinase from fungi, virulence factors from nematodes and mycoplasma, insecticidal toxins from Bacillus thuringiensis, and herbicide tolerance enzymes from bacteria. - Introduces the principles of microbial biotechnology and its application in crop improvement - Lists various new developments in enhancing plant productivity and efficiency - Explains the mechanisms of plant/microbial interactions and the beneficial use of these interactions in crop improvement - Explores various bacteria classes and their beneficial effects in plant growth and efficiency