Microbiology of Waterborne Diseases


Book Description

The second edition of Microbiology of Waterborne Diseases describes the diseases associated with water, their causative agents and the ways in which they gain access to water systems. The book is divided into sections covering bacteria, protozoa, and viruses. Other sections detail methods for detecting and identifying waterborne microorganisms, and the ways in which they are removed from water, including chlorine, ozone, and ultraviolet disinfection. The second edition of this handbook has been updated with information on biofilms and antimicrobial resistance. The impact of global warming and climate change phenomena on waterborne illnesses are also discussed. This book serves as an indispensable reference for public health microbiologists, water utility scientists, research water pollution microbiologists environmental health officers, consultants in communicable disease control and microbial water pollution students. Focuses on the microorganisms of most significance to public health, including E. coli, cryptosporidium, and enterovirus Highlights the basic microbiology, clinical features, survival in the environment, and gives a risk assessment for each pathogen Contains new material on antimicrobial resistance and biofilms Covers drinking water and both marine and freshwater recreational bathing waters




Indicators for Waterborne Pathogens


Book Description

Recent and forecasted advances in microbiology, molecular biology, and analytical chemistry have made it timely to reassess the current paradigm of relying predominantly or exclusively on traditional bacterial indicators for all types of waterborne pathogens. Nonetheless, indicator approaches will still be required for the foreseeable future because it is not practical or feasible to monitor for the complete spectrum of microorganisms that may occur in water, and many known pathogens are difficult to detect directly and reliably in water samples. This comprehensive report recommends the development and use of a "tool box" approach by the U.S Environmental Protection Agency and others for assessing microbial water quality in which available indicator organisms (and/or pathogens in some cases) and detection method(s) are matched to the requirements of a particular application. The report further recommends the use of a phased, three-level monitoring framework to support the selection of indicators and indicator approaches.Â




Waterborne Pathogens


Book Description

Waterborne Pathogens: Detection and Treatment delivers the tools and techniques on how to identify these contaminates and apply the most effective technology for their removal and treatment. Written for researchers and practicing professionals, the book starts with a brief, but readable, review of ubiquitous waterborne pathogens (primarily viruses, bacterial and parasitic protozoa). This coverage is followed by an in-depth discussion of the latest detection and treatment technologies, ranging from Biosensors, to Nanoconjugates, Membrane Based Technologies and Nanotechnology Treatment. Engineers and scientist will find this to be a valuable reference on cutting-edge techniques for suppling safe drinking water across the globe. - Explains the latest research on detection, treatment processes and remediation technologies - Includes sampling, analytical and characterization methods and approaches - Covers cutting-edge research, including Membrane Based Technologies, Nanotechnology Treatment Technologies and Bioremediation Treatment Technologies - Provides background information regarding contamination sources




The Coliform Index and Waterborne Disease


Book Description

In the past decade there has been a rapid increase in waterborne outbreaks of disease associated with viral and protozoan agents, normally in drinking waters that were found to be microbially safe using the Coliform Index.For nearly a quarter of a century indicator organisms, in particular the coliform group, have been used to ensure the microbial




Management of Legionella in Water Systems


Book Description

Legionnaires' disease, a pneumonia caused by the Legionella bacterium, is the leading cause of reported waterborne disease outbreaks in the United States. Legionella occur naturally in water from many different environmental sources, but grow rapidly in the warm, stagnant conditions that can be found in engineered water systems such as cooling towers, building plumbing, and hot tubs. Humans are primarily exposed to Legionella through inhalation of contaminated aerosols into the respiratory system. Legionnaires' disease can be fatal, with between 3 and 33 percent of Legionella infections leading to death, and studies show the incidence of Legionnaires' disease in the United States increased five-fold from 2000 to 2017. Management of Legionella in Water Systems reviews the state of science on Legionella contamination of water systems, specifically the ecology and diagnosis. This report explores the process of transmission via water systems, quantification, prevention and control, and policy and training issues that affect the incidence of Legionnaires' disease. It also analyzes existing knowledge gaps and recommends research priorities moving forward.




Global Issues in Water, Sanitation, and Health


Book Description

As the human population grows-tripling in the past century while, simultaneously, quadrupling its demand for water-Earth's finite freshwater supplies are increasingly strained, and also increasingly contaminated by domestic, agricultural, and industrial wastes. Today, approximately one-third of the world's population lives in areas with scarce water resources. Nearly one billion people currently lack access to an adequate water supply, and more than twice as many lack access to basic sanitation services. It is projected that by 2025 water scarcity will affect nearly two-thirds of all people on the planet. Recognizing that water availability, water quality, and sanitation are fundamental issues underlying infectious disease emergence and spread, the Institute of Medicine held a two-day public workshop, summarized in this volume. Through invited presentations and discussions, participants explored global and local connections between water, sanitation, and health; the spectrum of water-related disease transmission processes as they inform intervention design; lessons learned from water-related disease outbreaks; vulnerabilities in water and sanitation infrastructure in both industrialized and developing countries; and opportunities to improve water and sanitation infrastructure so as to reduce the risk of water-related infectious disease.




Bacteriophages in the Control of Food- and Waterborne Pathogens


Book Description

Gain a better understanding of how these fascinating microorganisms can help ensure a safe food supply. • Provides a unique comprehensive review of the literature on the application of bacteriophages as therapeutic and prophylactic agents in the food production and processing industries, including food animals, plants, and aquaculture. • Describes how bacteriophages function, explaining why they have the potential to be highly effective antimicrobials, and explores opportunities to use bacteriophages to detect bacterial contamination of foods and water and to control pathogens during both food production and processing. • Examines bacteriophages that can have a negative effect on industrial food processes and bacteriophages that potentially can lead to the evolution of foodborne pathogens; and covers safety and regulatory issues that are crucial to the success of bacteriophage use. • Serves as a resource for food microbiologists, food industry professionals, government regulators.




Drinking Water Microbiology


Book Description

The microbiology of drinking water remains an important worldwide concern despite modem progress in science and engineering. Countries that are more technologically advanced have experienced a significant reduction in water borne morbidity within the last 100 years: This reduction has been achieved through the application of effective technologies for the treatment, disinfec tion, and distribution of potable water. However, morbidity resulting from the ingestion of contaminated water persists globally, and the available ep idemiological evidence (Waterborne Diseases in the United States, G. F. Craun, ed. , 1986, CRC Press) demonstrates a dramatic increase in the number of waterborne outbreaks and individual cases within the United States since the mid-1960s. In addition, it should also be noted that the incidence of water borne outbreaks of unknown etiology and those caused by "new" pathogens, such as Campylobaeter sp. , is also increasing in the United States. Although it might be debated whether these increases are real or an artifact resulting from more efficient reporting, it is clear that waterborne morbidity cannot be ignored in the industrialized world. More significantly, it represents one of the most important causes of illness within developing countries. Approxi mately one-half the world's population experiences diseases that are the direct consequence of drinking polluted water. Such illnesses are the primary cause of infant mortality in many Third World countries.




Heterotrophic Plate Counts and Drinking-water Safety


Book Description

Heterotrophic Plate Counts and Drinking-water Safety provides a critical assessment of the role of the Heterotrophic Plate Count (HPC) measurement in drinking water quality management. It was developed from an Expert workshop of 32 scientists convened by the World Health Organization and the WHO/NSF International Collaborating Centre for Drinking Water Safety and Treatment in Geneva, Switzerland. Heterotrophs are organisms, including bacteria, yeasts and moulds, that require an external source of organic carbon for growth. The HPC test (or Standard Plate Count), applied in many variants, is the internationally accepted test for measuring the hetrotrophic microorganism population in drinking water, and also other media. It measures only a fraction of the microorganisms actually present and does not distinguish between pathogens and non-pathogens. High levels of microbial growth can affect the taste and odor of drinking water and may indicate the presence of nutrients and biofilms which could harbor pathogens, as well as the possibility that some event has interfered with the normal production of the drinking water. HPC counts also routinely increase in water that has been treated by an in-line device such as a carbon filter or softener, in water-dispensing devices and in bottled waters and indeed in all water that has suitable nutrients, does not have a residual disinfectant, and is kept under sufficient conditions. There is debate among health professionals as to the need, utility or quantitative basis for health-based standards or guidelines relating to HPC-measured regrowth in drinking water. The issues that were addressed in this work include: the relationship between HPC in drinking water (including that derived from in-line treatment systems, dispensers and bottled water) and health risks for the general public the role of HPC as an indirect indicator or index for pathogens of concern in drinking water the role of HPC in assessing the efficacy and proper functioning of water treatment and supply processes the relationship between HPC and the aesthetic acceptability of drinking water. Heterotrophic Plate Counts and Drinking-water Safety provides valuable information on the utility and the limitations of HPC data in the management and operation of piped water systems as well as other means of providing drinking water to the public. It is of particular value to piped public water suppliers and bottled water suppliers, manufacturers and users of water treatment and transmission equipment and inline treatment devices, water engineers, sanitary and clinical microbiologists, and national and local public health officials and regulators of drinking water quality.




Microbial Source Tracking


Book Description

Presents a state-of-the-art review of the current technology and applications being utilized to identify sources of fecal contamination in waterways. - Serves as a useful reference for researchers in the food industry, especially scientists investigating etiological agents responsible for food contamination. - Provides background information on MST methods and the assumptions and limitations associated with their use. - Covers a broad range of topics related to MST, including environmental monitoring, public health and national security, population biology, and microbial ecology. - Offers valuable insights into future research directions and technology developments.