Microelectronics Packaging Handbook


Book Description

Electronics has become the largest industry, surpassing agriculture, auto, and heavy metal industries. It has become the industry of choice for a country to prosper, already having given rise to the phenomenal prosperity of Japan, Korea, Singapore, Hong Kong, and Ireland among others. At the current growth rate, total worldwide semiconductor sales will reach $300B by the year 2000. The key electronic technologies responsible for the growth of the industry include semiconductors, the packaging of semiconductors for systems use in auto, telecom, computer, consumer, aerospace, and medical industries, displays, magnetic, and optical storage as well as software and system technologies. There has been a paradigm shift, however, in these technologies, from mainframe and supercomputer applications at any cost, to consumer applications at approximately one-tenth the cost and size. Personal computers are a good example, going from $500IMIP when products were first introduced in 1981, to a projected $IIMIP within 10 years. Thin, light portable, user friendly and very low-cost are, therefore, the attributes of tomorrow's computing and communications systems. Electronic packaging is defined as interconnection, powering, cool ing, and protecting semiconductor chips for reliable systems. It is a key enabling technology achieving the requirements for reducing the size and cost at the system and product level.




Microelectronic Packaging


Book Description

Microelectronic Packaging analyzes the massive impact of electrochemical technologies on various levels of microelectronic packaging. Traditionally, interconnections within a chip were considered outside the realm of packaging technologies, but this book emphasizes the importance of chip wiring as a key aspect of microelectronic packaging, and focuses on electrochemical processing as an enabler of advanced chip metallization. Divided into five parts, the book begins by outlining the basics of electrochemical processing, defining the microelectronic packaging hierarchy, and emphasizing the impact of electrochemical technology on packaging. The second part discusses chip metallization topics including the development of robust barrier layers and alternative metallization materials. Part III explores key aspects of chip-package interconnect technologies, followed by Part IV's analysis of packages, boards, and connectors which covers materials development, technology trends in ceramic packages and multi-chip modules, and electroplated contact materials. Illustrating the importance of processing tools in enabling technology development, the book concludes with chapters on chemical mechanical planarization, electroplating, and wet etching/cleaning tools. Experts from industry, universities, and national laboratories submitted reviews on each of these subjects, capturing the technological advances made in each area. A detailed examination of how packaging responds to the challenges of Moore's law, this book serves as a timely and valuable reference for microelectronic packaging and processing professionals and other industrial technologists.




Thermal Stress and Strain in Microelectronics Packaging


Book Description

Microelectronics packaging and interconnection have experienced exciting growth stimulated by the recognition that systems, not just silicon, provide the solution to evolving applications. In order to have a high density/ performance/yield/quality/reliability, low cost, and light weight system, a more precise understanding of the system behavior is required. Mechanical and thermal phenomena are among the least understood and most complex of the many phenomena encountered in microelectronics packaging systems and are found on the critical path of neatly every design and process in the electronics industry. The last decade has witnessed an explosive growth in the research and development efforts devoted to determining the mechanical and thermal behaviors of microelectronics packaging. With the advance of very large scale integration technologies, thousands to tens of thousands of devices can be fabricated on a silicon chip. At the same time, demands to further reduce packaging signal delay and increase packaging density between communicat ing circuits have led to the use of very high power dissipation single-chip modules and multi-chip modules. The result of these developments has been a rapid growth in module level heat flux within the personal, workstation, midrange, mainframe, and super computers. Thus, thermal (temperature, stress, and strain) management is vital for microelectronics packaging designs and analyses. How to determine the temperature distribution in the elec tronics components and systems is outside the scope of this book, which focuses on the determination of stress and strain distributions in the electronics packaging.




Microelectronics Packaging Handbook


Book Description

Electronics has become the largest industry, surpassing agriCUlture, auto. and heavy metal industries. It has become the industry of choice for a country to prosper, already having given rise to the phenomenal prosperity of Japan. Korea. Singapore. Hong Kong. and Ireland among others. At the current growth rate, total worldwide semiconductor sales will reach $300B by the year 2000. The key electronic technologies responsible for the growth of the industry include semiconductors. the packaging of semiconductors for systems use in auto, telecom, computer, consumer, aerospace, and medical industries. displays. magnetic, and optical storage as well as software and system technologies. There has been a paradigm shift, however, in these technologies. from mainframe and supercomputer applications at any cost. to consumer applications at approximately one-tenth the cost and size. Personal computers are a good example. going from $500IMIP when products were first introduced in 1981, to a projected $lIMIP within 10 years. Thin. light portable. user friendly and very low-cost are. therefore. the attributes of tomorrow's computing and communications systems. Electronic packaging is defined as interconnection. powering, cool ing, and protecting semiconductor chips for reliable systems. It is a key enabling technology achieving the requirements for reducing the size and cost at the system and product level.




Integrated Circuit Packaging, Assembly and Interconnections


Book Description

Reviewing the various IC packaging, assembly, and interconnection technologies, this professional reference provides an overview of the materials and the processes, as well as the trends and available options that encompass electronic manufacturing. It covers both the technical issues and touches on some of the reliability concerns with the various technologies applicable to packaging and assembly of the IC. The book discusses the various packaging approaches, assembly options, and essential manufacturing technologies, among other relevant topics.







Microelectronics Packaging Handbook


Book Description

This thoroughly revised and updated three volume set continues to be the standard reference in the field, providing the latest in microelectronics design methods, modeling tools, simulation techniques, and manufacturing procedures. Unlike reference books that focus only on a few aspects of microelectronics packaging, these outstanding volumes discuss state-of-the-art packages that meet the power, cooling, protection, and interconnection requirements of increasingly dense and fast microcircuitry. Providing an excellent balance of theory and practical applications, this dynamic compilation features step-by-step examples and vital technical data, simplifying each phase of package design and production. In addition, the volumes contain over 2000 references, 900 figures, and 250 tables. Part I: Technology Drivers covers the driving force of microelectronics packaging - electrical, thermal, and reliability. It introduces the technology developer to aspects of manufacturing that must be considered during product development. Part II: Semiconductor Packaging discusses the interconnection of the IC chip to the first level of packaging and all first level packages. Electrical test, sealing, and encapsulation technologies are also covered in detail. Part III: Subsystem Packaging explores board level packaging as well as connectors, cables, and optical packaging.




3D Microelectronic Packaging


Book Description

This book offers a comprehensive reference guide for graduate students and professionals in both academia and industry, covering the fundamentals, architecture, processing details, and applications of 3D microelectronic packaging. It provides readers an in-depth understanding of the latest research and development findings regarding this key industry trend, including TSV, die processing, micro-bumps for LMI and MMI, direct bonding and advanced materials, as well as quality, reliability, fault isolation, and failure analysis for 3D microelectronic packages. Images, tables, and didactic schematics are used to illustrate and elaborate on the concepts discussed. Readers will gain a general grasp of 3D packaging, quality and reliability concerns, and common causes of failure, and will be introduced to developing areas and remaining gaps in 3D packaging that can help inspire future research and development.




Electronic Packaging and Interconnection Handbook


Book Description

Charles A. Harper's 2nd edition on designing and manufacturing all the major types of electronic systems is now double the size of the 1st edition. It draws upon the expertise of a dozen experts to make sense of this highly interdisciplinary field




Force Sensors for Microelectronic Packaging Applications


Book Description

Intended for wire-bonding and flip-chip packaging professionals and for scientists and engineers working in the field of mechanical microsensors, this practical monograph introduces novel measurement technologies that allow for in situ and real-time examination of physical processes during the packaging process or during subsequent reliability tests. The measurement system presented here makes possible measurements at formerly inaccessible packaging interconnects. For the first time it becomes possible to describe the wire-bonding process window in terms of the physical forces at the contact zone instead of the applied machine settings. This is significant for a deeper understanding and future development of these packaging processes. Applications of the sensor in the field of wire bonding and flip-chip characterization are also illustrated. The reader will gain much insight into the important field of interconnection technology in semiconductor packaging.