Micronutrient Deficiencies in Global Crop Production


Book Description

A deficiency of one or more of the eight plant micronutrients (boron, chlorine, copper, iron, manganese, molybdenum, nickel and zinc) will adversely affect both the yield and quality of crops. Micronutrient deficiencies in crops occur in many parts of the world, at various scales (from one to millions of hectares), but differences in soil conditions, climate, crop genotypes and management, result in marked variations in their occurrence. The causes, effects and alleviation of micronutrient deficiencies in crops in: Australia, India, China, Turkey, the Near East, Africa, Europe, South America and the United States of America, are covered, and these are representative of most of the different conditions under which crops are grown anywhere in the world. Links between low contents of iodine, iron and zinc (human micronutrients) in staple grains and the incidence of human health problems are discussed, together with the ways in which the micronutrient content of food crops can be increased and their bioavailability to humans improved. Detailed treatment of topics, such as: soil types associated with deficiencies, soil testing and plant analysis, field experiments, innovative treatments, micronutrients in the subsoil, nutrient interactions, effects of changing cropping systems, micronutrient budgets and hidden deficiencies in various chapters provides depth to the broad coverage of the book. This book provides a valuable guide to the requirements of crops for plant micronutrients and the causes, occurrence and treatment of deficiencies. It is essential reading for many agronomy, plant nutrition and agricultural extension professionals.







Micronutrients in Tropical Food Crop Production


Book Description

The mission of the International Fertilizer Development Center is to increase food production through the improvement of fertilizers and fertilizer practices for the developing countries with special emphasis on tropical and subtropical agriculture. The principal aim is to ensure that fertilizer technology is not a limiting factor to food production in those regions. Although the full extent to which deficiency of micronutrients hampers food production is yet un known, there is ample evidence that problem areas exist and more will be identified as crop production is intensified and marginal lands are exploited. Therefore, it seems fully appropriate at this time that IFDC, as an international organization, take a leadership role in developing micronutrient fertilizer technology appropriate for the tropics and subtropics. The gravity of micronutrient deficiency as a limiting factor to crop pro duction varies from crop to crop and from soil to soil. The effects may range from slight yield reductions to complete crop failure. While the economic impact of omitting micronutrients in seriously affected areas (e.g., Zn in Brazilian Cerrado) is convincing, it is difficult to estimate the yearly loss in crop production due to unsuspected micronutrient deficiency. Active soil and crop testing programs in regions with advanced agricultural systems are aimed at recognizing micronutrients as a limiting plant nutrient in time to allow corrective measures and prevent yield loss. Successful micronutrient monitoring systems are generally limited to developed economies or to developing economies producing export cash crops.




Nutrient Dynamics for Sustainable Crop Production


Book Description

The cropping system is one of the important components of sustainable agriculture, since it provides more efficient nutrient cycling. As such, balanced fertilization must be based on the concept of sustainable crop production. Feeding the rapidly growing world population using environmentally sustainable production systems is a major challenge, especially in developing countries. A number of studies have highlighted the fact that degradation of the world's cultivated soils is largely responsible for low and plateauing yields. Soil is lost rapidly but only formed over millennia, and this represents the greatest global threat to nutrient dynamics in agriculture. This means that nutrient management is essential to provide food and nutritional security for current and future generations. Nutrient dynamics and soil sustainability imply the maintenance of the desired ecological balance, the enhancement and preservation of soil functions, and the protection of biodiversity above and below ground. Understanding the role of nutrient management as a tool for soil sustainability and nutritional security requires a holistic approach to a wide range of soil parameters (biological, physical, and chemical) to assess the soil functions and nutrient dynamics of a crop management system within the desired timescale. Further, best nutrient management approaches are important to advance soil sustainability and food and nutritional security without compromising the soil quality and productive potential. Sustainable management practices must allow environmentally and economically sustainable yields and restore soil health and sustainability. This book presents soil management approaches that can provide a wide range of benefits, including improved fertility, with a focus on the importance of nutrient dynamics. Discussing the broad impacts of nutrients cycling on the sustainability of soil and the cropping systems that it supports, it also addresses nutrient application to allow environmentally and economically sustainable agroecosystems that restore soil health. Arguing that balanced fertilization must be based on the concept of INM for a cropping system rather than a crop, it provides a roadmap to nutrient management for sustainability. This richly illustrated book features tables, figures and photographs and includes extensive up-to-date references, making it a valuable resource for policymakers and researchers, as well as undergraduate and graduate students of Soil Science, Agronomy, Ecology and Environmental Sciences.




Micronutrient Fertilizer Use in Pakistan


Book Description

Micronutrient research has been an important component of the soil fertility and plant nutrition program in Pakistan since the identification of zinc deficiency in rice in 1969. Since then, considerable progress has been made on diagnosis and management of micronutrient nutrition problems in crops. However, now there is growing R&D evidence that micronutrient malnutrition in humans could be addressed through enriching staple food grains with micronutrients. This book presents the latest R&D information on micronutrient problems in crop plants/cropping systems and their corrective measures. The current status, the constraints, and economic benefits of using micronutrient fertilizers for optimizing crop productivity and soil resource sustainability are discussed along with estimating future potential requirement of micronutrient fertilizers to optimize crop productivity, produce quality, and soil resource sustainability. Wide-scale preventable micronutrient deficiencies in human populations originate from micronutrient-deficient soils over which staple cereals and other food crops are grown. This book summarizes R&D information on fertilizer use-based micronutrient biofortification in staple food grains to address "hidden hunger" in human populations. The book also presents the best management practices by which micronutrient deficiencies could be corrected in crop plants in a farmer-friendly manner. Features Reviews the micronutrients R&D carried out in Pakistan over the past five decades Focuses on soil–plant analysis techniques for effective prognosis and diagnosis of micronutrient disorders Presents spatial variability maps of micronutrient deficiencies in agricultural soils and crops Provides value–cost ratios of using micronutrient fertilizers for major crops Works out current use level of micronutrient fertilizers and their potential future requirements in the country Discusses agronomic biofortification approach for enriching crop-based food with micronutrients to address "hidden hunger" Presents a compelling case for enhanced use of the deficient micronutrient fertilizers to optimize crop productivity, farmer income, and national economy Presents micronutrient fertilizer use recommendations for salient crops and discusses fertilizer use for micronutrients in the context of 4R nutrient stewardship Recommends future R&D needed for optimizing micronutrient nutrition of crops




Achieving Sustainable Crop Nutrition


Book Description

This collection reviews current research on understanding nutrient cycles, the ways crops process nutrients, the environmental effects of fertilizer use and how this understanding can be used to improve nutrient use efficiency for a more resource-efficient and climate-smart agriculture. Parts 1-3 summarise research on the primary macronutrients: nitrogen, phosphorus and potassium. Chapter review what we know about nutrient cycles, crop nutrient processing, potential environmental effects and ways of optimising nutrient use efficiency (NUE). The fourth section of the book discusses secondary macronutrients and micronutrients including: calcium, magnesium, sulphur, zinc, boron, manganese and molybdenum. The final two parts of the book review research on optimising fertiliser use. Chapters cover topics such as assessing nutrient availability, decision support systems for optimising crop nutrition, advances in site-specific nutrient management and advances in integrated plant nutrient management. Other chapters discuss enhanced efficiency fertilisers, the use of bio-effectors/bio-stimulants, fertigation techniques and the use of organic amendments. With its distinguished editor and international team of expert authors, this will be a standard reference on optimising crop nutrition for the crop science and farming community.




Plant Micronutrients


Book Description

Plants require essential nutrients (macronutrients and micronutrients) for normal functioning. Sufficiency range is the levels of nutrients necessary to meet the plant’s needs for optimal growth. This range depends on individual plant species and the particular nutrient. Nutrient levels outside of a plant’s sufficiency range cause overall crop growth and health to decline, due either to deficiency or toxicity from over-accumulation. Apart from micronutrients (B, Cl, Mn, Fe, Zn, Cu and Mo), Aluminum (Al), cerium (Ce), cobalt (Co), iodine (I), lanthanum (La), sodium (Na), selenium (Se), silicon (Si), titanium (Ti), and vanadium (V) are emerging as novel biostimulants that may enhance crop productivity and nutritional quality. These beneficial elements are not "essential" but when supplied at low dosages, they augment plant growth, development, and yield by stimulating specific molecular, biochemical, and physiological pathways in responses to challenging environments. The book is the first reference volume that approaches plant micronutrient management with the latest biotechnological and omics tools. Expertly curated chapters highlight working solutions as well as open problems and future challenges in plant micronutrient deficiency or toxicity. We believe this book will introduce readers to state-of-the-art developments and research trends in this field.




North American Agroforestry


Book Description

North American Agroforestry Explore the many benefits of alternative land-use systems with this incisive resource Humanity has become a victim of its own success. While we’ve managed to meet the needs—to one extent or another—of a large portion of the human population, we’ve often done so by ignoring the health of the natural environment we rely on to sustain our planet. And by deteriorating the quality of our air, water, and land, we’ve put into motion consequences we’ll be dealing with for generations. In the newly revised Third Edition of North American Agroforestry, an expert team of researchers delivers an authoritative and insightful exploration of an alternative land-use system that exploits the positive interactions between trees and crops when they are grown together and bridges the gap between production agriculture and natural resource management. This latest edition includes new material on urban food forests, as well as the air and soil quality benefits of agroforestry, agroforestry’s relevance in the Mexican context, and agroforestry training and education. The book also offers: A thorough introduction to the development of agroforestry as an integrated land use management strategy Comprehensive explorations of agroforestry nomenclature, concepts, and practices, as well as an agroecological foundation for temperate agroforestry Practical discussions of tree-crop interactions in temperate agroforestry, including in systems such as windbreak practices, silvopasture practices, and alley cropping practices In-depth examinations of vegetative environmental buffers for air and water quality benefits, agroforestry for wildlife habitat, agroforestry at the landscape level, and the impact of agroforestry on soil health Perfect for environmental scientists, natural resource professionals and ecologists, North American Agroforestry will also earn a place in the libraries of students and scholars of agricultural sciences interested in the potential benefits of agroforestry.







Microbial Biofertilizers and Micronutrient Availability


Book Description

This volume addresses various issues related to micronutrient deficiency, especially zinc, and discusses the possible approaches for combating mineral deficiency among humans and plants. The book mainly focuses on the zinc biofortification of vegetable and cereal crops and highlights the consequences of zinc deficiency and the health risks associated with zinc deficiency, especially in children and expecting mothers. The authors discuss different types of food that are rich in zinc and other minerals, how diets can be designed to meet the daily zinc requirements, and the impact of zinc deficiency on plant health and quality of agricultural products and the role of micronutrients in abiotic stress tolerance. The book also covers sustainable approaches to zinc biofortification in crops, such as the microbial solubilization of zinc in soil to improve zinc uptake by plants, and the formulation of these microbes into biofertilizers. The book will be of interest to dieticians, agricultural scientists, students and microbiologists.