Microsensors


Book Description

This book is planned to publish with an objective to provide a state-of-art reference book in the area of microsensors for engineers, scientists, applied physicists and post-graduate students. Also the aim of the book is the continuous and timely dissemination of new and innovative research and developments in microsensors. This reference book is a collection of 13 chapters characterized in 4 parts: magnetic sensors, chemical, optical microsensors and applications. This book provides an overview of resonant magnetic field microsensors based on MEMS, optical microsensors, the main design and fabrication problems of miniature sensors of physical, chemical and biochemical microsensors, chemical microsensors with ordered nanostructures, surface-enhanced Raman scattering microsensors based on hybrid nanoparticles, etc. Several interesting applications area are also discusses in the book like MEMS gyroscopes for consumer and industrial applications, microsensors for non invasive imaging in experimental biology, a heat flux microsensor for direct measurements in plasma surface interactions and so on.




Mechanical Microsensors


Book Description

This book on mechanical microsensors is based on a course organized by the Swiss Foundation for Research in Microtechnology (FSRM) in Neuchatel, Swit zerland, and developed and taught by the authors. Support by FSRM is herewith gratefully acknowledged. This book attempts to serve two purposes. First it gives an overview on me chanical microsensors (sensors for pressure, force, acceleration, angular rate and fluid flow, realized by silicon micromachining). Second, it serves as a textbook for engineers to give them a comprehensive introduction on the basic design issues of these sensors. Engineers active in sensor design are usually educated either in electrical engineering or mechanical engineering. These classical educa tional pro grams do not prepare the engineer for the challenging task of sensor design since sensors are instruments typically bridging the disciplines: one needs a rather deep understanding of both mechanics and electronics. Accordingly, the book contains discussion of the basic engineering sciences relevant to mechanical sensors, hopefully in a way that it is accessible for all colours of engineers. Engi rd th neering students in their 3 or 4 year should have enough knowledge to be able to follow the arguments presented in this book. In this sense, this book should be useful as textbook for students in courses on mechanical microsensors (as is CUf rently being done at the University ofTwente).




Chemical and Biological Microsensors


Book Description

This book reviews the state of art in the field of chemical sensors for analyses of ionic or molecular species dissolved in liquid media, mainly in aqueous solutions. The transduction of such devices is based on chemical, biological and physical phenomena. The fundamental phenomena involved in these sensors are described in the different chapters by specialists having a good expertise in the field. Numerous recent bibliographic references are given. Most of the devices could be miniaturised using modern technologies allowing a fabrication on a large scale, for a mass production at low cost. Moreover, such devices could open the field of applications in a near future (environmental, biomedical, food industries, domotic and automotive applications etc.).




Microsensors


Book Description

Devoted primarily to the many applications of microsensors, this text covers thermal, radiation, mechanical, magnetic, chemical and biological microsensors. Information is also provided on basic processing, interfacing and bus systems, microsensor array and intelligent sensors.




CMOS Hotplate Chemical Microsensors


Book Description

The first comprehensive text on microhotplate-based chemical sensor systems in CMOS-technology covers all aspects of successful sensor prototyping: theoretical considerations for modelling, controller- and system design, simulation of circuits and microsensors, design considerations, microfabrication, packaging and testing. A whole family of metal-oxide based microsensor systems with increasing complexity is presented, including fully integrated sensor arrays. This represents one of the first examples of integrated nanomaterials, microtechnology and embedded circuitry.




Microsensors, MEMS, and Smart Devices


Book Description

Microsensors and MEMS (micro-electro-mechanical systems) are revolutionising the semiconductor industry. A microsystem or the so-called "system-on-a-chip" combines microelectronic circuitry with microsensors and microactuators. This emergent field has seen the development of applications ranging from the electronic nose and intelligent ear to micro-tweezers and the modern ink-jet nozzle. Providing a complete overview of microsensor technologies, this unique reference addresses vital integration issues for the successful application of microsensors, MEMS and smart devices. Features include: * Review of traditional and emerging fabrication processes including bulk and silicon micromachining, microstereolithography and polymer processing methods. * Focus on the use of IDT (interdigital transducer) microsensors in the development of low energy budget, wireless MEMS or micromachines. * Coverage of the katest applications in smart devices including the electronic nose, tongue and finger, along with smart sensors and strcutures such as smart skin. * An overview of the development of intelligent sensing devices through the use of sensor arrays, parametric compensation of sensor sugnals and ASIC technology. * Comprehensive appendices outlining vital MEMS material properties, relevant web sites and a guide to key institutions active in the field. Microsensors, MEMS and Smart Devices presents readers with the means to understand and evaluate microsystems. Advanced students and researchers in microelectronics, engineers and developers of microsensor systems will find this comprehensive treatment essential reading. Detailed coverage of material properties makes this an important reference work for mechnical engineers, physicists and material scientists working in the field.




Advanced Nanomaterials for Inexpensive Gas Microsensors


Book Description

Advanced Nanomaterials for Inexpensive Gas Microsensors: Synthesis, Integration and Applications presents full coverage in the area of gas sensing nanomaterials, from materials, transducers and applications, to the latest results and future direction. Experts present work on metal oxides, carbon-based and hybrid materials, fabrication and application. The book brings together three major themes, including synthesis, functionalization and the characterization of advanced nanomaterials, all emphasizing synthesis techniques that ease the integration of nanomaterials in transducers. Chapters encompass a wide spectrum of sensing technologies, including advanced nanomaterials (metal oxides, carbon materials and graphene) and organic molecular materials and atomic layers (MoS2). The book's authors examine the coupling of sensitive nanomaterials to different types of transducer elements and their applications, including direct growth and additive fabrication techniques as a way to obtain inexpensive gas microsensors, principal transduction schemes, and advanced operating methods.




Fundamentals of Biofilm Research, Second Edition


Book Description

The six years that have passed since the publication of the first edition have brought significant advances in both biofilm research and biofilm engineering, which have matured to the extent that biofilm-based technologies are now being designed and implemented. As a result, many chapters have been updated and expanded with the addition of sections reflecting changes in the status quo in biofilm research and engineering. Emphasizing process analysis, engineering systems, biofilm applications, and mathematical modeling, Fundamentals of Biofilm Research, Second Edition provides the tools to unify and advance biofilm research as a whole. Retaining the goals of the first edition, this second edition serves as: A compendium of knowledge about biofilms and biofilm processes A set of instructions for designing and conducting biofilm experiments A set of instructions for making and using various tools useful in biofilm research A set of computational procedures useful in interpreting results of biofilm research A set of instructions for using the model of stratified biofilms for data interpretation, analysis, and biofilm activity prediction




Fundamentals of Biofilm Research


Book Description

The history of natural sciences demonstrates that major advances in the understanding of natural processes follow the development of relevant tools. The progress of biofilm research is no different. While individual areas have mushroomed in recent years, difficulties in reproducing results, communicating new findings, and reconciling differences in




The Benthic Boundary Layer


Book Description

The benthic boundary layer is the zone of water and sediment immediately adjacent to the bottom of a sea, lake, or river. This zone is of considerable interest to biologists, geochemists, sedimentologists, and engineers because of very strong gradients of energy, dissolved and solid chemical components, suspended matter, and the number of organisms that live there. It is, for example, the sink for anthropogenic substances and the home of microscopic plant life that provides the nutrients that determine fish populations--and ultimately the size of the fisheries. This book of original chapters edited by Professors Boudreau and Jorgensen, both leading researchers in the field, will meet the need for an up-to-date, definitive text/reference on measurements, techniques, and models for transport and biochemical processes in the benthic boundary layer. Each chapter provides a comprehensive review of a selected field, with illustrated examples from the authors' own work. The book will appeal to professionals and researchers in marine biology, marine chemistry, marine engineering, and sedimentology.