MEMS


Book Description

Thoroughly revised and updated, the new edition of the best-selling MEMS Handbook is now presented as a three-volume set that offers state-of-the-art coverage of microelectromechanical systems. The first volume, MEMS: Introduction and Fundamentals builds the required background and explores various physical considerations of MEMS. Topics include scaling, simulation models, the basics of control theory, and the physics of materials flow, thin liquid films, and bubble/drop transport. New chapters in this edition address lattice Boltzmann simulations and microscale hydrodynamics. Standing well on its own, this books builds an outstanding foundation for further exploration of MEMS and their applications.







Netcentric System of Systems Engineering with DEVS Unified Process


Book Description

In areas such as military, security, aerospace, and disaster management, the need for performance optimization and interoperability among heterogeneous systems is increasingly important. Model-driven engineering, a paradigm in which the model becomes the actual software, offers a promising approach toward systems of systems (SoS) engineering. However, model-driven engineering has largely been unachieved in complex dynamical systems and netcentric SoS, partly because modeling and simulation (M&S) frameworks are stove-piped and not designed for SoS composability. Addressing this gap, Netcentric System of Systems Engineering with DEVS Unified Process presents a methodology for realizing the model-driven engineering vision and netcentric SoS using DEVS Unified Process (DUNIP). The authors draw on their experience with Discrete Event Systems Specification (DEVS) formalism, System Entity Structure (SES) theory, and applying model-driven engineering in the context of a netcentric SoS. They describe formal model-driven engineering methods for netcentric M&S using standards-based approaches to develop and test complex dynamic models with DUNIP. The book is organized into five sections: Section I introduces undergraduate students and novices to the world of DEVS. It covers systems and SoS M&S as well as DEVS formalism, software, modeling language, and DUNIP. It also assesses DUNIP with the requirements of the Department of Defense’s (DoD) Open Unified Technical Framework (OpenUTF) for netcentric Test and Evaluation (T&E). Section II delves into M&S-based systems engineering for graduate students, advanced practitioners, and industry professionals. It provides methodologies to apply M&S principles to SoS design and reviews the development of executable architectures based on a framework such as the Department of Defense Architecture Framework (DoDAF). It also describes an approach for building netcentric knowledge-based contingency-driven systems. Section III guides graduate students, advanced DEVS users, and industry professionals who are interested in building DEVS virtual machines and netcentric SoS. It discusses modeling standardization, the deployment of models and simulators in a netcentric environment, event-driven architectures, and more. Section IV explores real-world case studies that realize many of the concepts defined in the previous chapters. Section V outlines the next steps and looks at how the modeling of netcentric complex adaptive systems can be attempted using DEVS concepts. It touches on the boundaries of DEVS formalism and the future work needed to utilize advanced concepts like weak and strong emergence, self-organization, scale-free systems, run-time modularity, and event interoperability. This groundbreaking work details how DUNIP offers a well-structured, platform-independent methodology for the modeling and simulation of netcentric system of systems.




Mems/Nems


Book Description

This significant and uniquely comprehensive five-volume reference is a valuable source for research workers, practitioners, computer scientists, students, and technologists. It covers all of the major topics within the subject and offers a comprehensive treatment of MEMS design, fabrication techniques, and manufacturing methods. It also includes current medical applications of MEMS technology and provides applications of MEMS to opto-electronic devices. It is clearly written, self-contained, and accessible, with helpful standard features including an introduction, summary, extensive figures and design examples with comprehensive reference lists.




Mechatronic Systems


Book Description

Covers the modelling and simulation of mechatronic and micromechatronic systems using HDLs. Provides an overview of the design of digital and analog circuitry and software for mechatronic systems. Presents practical guidance on both chip and systems design for a wide range of mechatronic applications. Focuses on a practical approach to the design and simulation of electronic hardware and components of mechatronic systems.




Shape and Functional Elements of the Bulk Silicon Microtechnique


Book Description

This methodic manual presents a survey of the form-related and functional elements of the bulk silicon microtechnique. It gives a systematic description of simple shape elements and of elements for mechanical, fluidic and optical applications. This manual includes practical instructions for the use of the relevant techniques and an extensive collection of examples for the support of the search for applications via photographs, drawings and references. It serves as a valuable guide to the design of etch masks and processes while summarizing the important properties of silicon, especially aiming at producers of sensors and microtechnical components, as well as producers of components of precision engineering and optical applications.




Agent-Based Models in Economics


Book Description

In contrast to mainstream economics, complexity theory conceives the economy as a complex system of heterogeneous interacting agents characterised by limited information and bounded rationality. Agent Based Models (ABMs) are the analytical and computational tools developed by the proponents of this emerging methodology. Aimed at students and scholars of contemporary economics, this book includes a comprehensive toolkit for agent-based computational economics, now quickly becoming the new way to study evolving economic systems. Leading scholars in the field explain how ABMs can be applied fruitfully to many real-world economic examples and represent a great advancement over mainstream approaches. The essays discuss the methodological bases of agent-based approaches and demonstrate step-by-step how to build, simulate and analyse ABMs and how to validate their outputs empirically using the data. They also present a wide set of applications of these models to key economic topics, including the business cycle, labour markets, and economic growth.




Proceedings


Book Description




Social Science Microsimulation


Book Description

This book gives an overview of the state of the art in five different approaches to social science simulation on the individual level. The volume contains microanalytical simulation models designed for policy implementation and evaluation, multilevel simulation methods designed for detecting emergent phenomena, dynamical game theory applications, the use of cellular automata to explain the emergence of structure in social systems, and multi-agent models using the experience from distributed artificial intelligence applied to special phenomena. The book collects the results of an international conference which brought together social scientists and computer scientists both engaged in a wide range of simulation approaches for the first time.




An Analog Electronics Companion


Book Description

Designed for engineers and scientists who are non-specialist in electronic circuit design.