Microwave Non-Destructive Testing and Evaluation Principles


Book Description

This book provides a thorough and coherent understanding of the fundamentals of microwave non-destructive evaluation principles. This is achieved by starting with the basic understanding of subjects such as waves, material media, interaction of waves at high frequencies with material media, understanding the fundamentals of reflection, refraction, transmission and wave polarization. All these issues are addressed in a concise manner providing a much needed text on this subject. Each chapter has a set of problems and questions, with solutions and worked examples, thus making the book of great use to those teaching in this area. This book will also be invaluable to all those conducting research in microwave NDE, whether based in an industrial or academic environment.




Materials Characterization Using Nondestructive Evaluation (NDE) Methods


Book Description

Materials Characterization Using Nondestructive Evaluation (NDE) Methods discusses NDT methods and how they are highly desirable for both long-term monitoring and short-term assessment of materials, providing crucial early warning that the fatigue life of a material has elapsed, thus helping to prevent service failures. Materials Characterization Using Nondestructive Evaluation (NDE) Methods gives an overview of established and new NDT techniques for the characterization of materials, with a focus on materials used in the automotive, aerospace, power plants, and infrastructure construction industries. Each chapter focuses on a different NDT technique and indicates the potential of the method by selected examples of applications. Methods covered include scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques. The authors review both the determination of microstructure properties, including phase content and grain size, and the determination of mechanical properties, such as hardness, toughness, yield strength, texture, and residual stress. - Gives an overview of established and new NDT techniques, including scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques - Reviews the determination of microstructural and mechanical properties - Focuses on materials used in the automotive, aerospace, power plants, and infrastructure construction industries - Serves as a highly desirable resource for both long-term monitoring and short-term assessment of materials




Non-destructive Testing of Impact Damage in Fiber-reinforced Polymer Composites


Book Description

Non-destructive Testing of Impact Damage in Fiber-reinforced Polymer Composites: Fundamentals and Applications provides detailed knowledge on the fundamentals and applications of frequently used nondestructive testing (NDT) techniques utilized to assess impact damage in composite structures. This book starts with an introduction to impact damage in composite structures, each subsequent chapter focuses on evaluating damage using specific NDT methods. Chapters 2–4 concentrate on vision-based NDT methods such as visual inspection, digital image correlation, and digital shearography. Following this, Chapters 5–6 delve into ultrasound-based methods, including acoustic emission and phased-array ultrasonic inspection. Radiation-based methods, micro-CT, and thermography are discussed in Chapters 7 and 8, while Chapters 9 and 10 elucidate microwave inspection and electrical impedance tomography. This book is a useful reference for both academia and industry and covers the fundamentals, practical tips, case studies, and applications, as well as current research trends and future possibilities, for each technique. - Insights into the diverse damage levels in composite materials resulting from low-velocity impact, ranging from micro matrix cracks to severe delamination and fiber breakage - Covers a broad range of NDT techniques, including recently developed NDT techniques, suitable for detecting impact damage in composite materials - Serves as a valuable reference for both academia and industry, providing comprehensive coverage of fundamental principles, practical insights, applications, case studies, current research trends, and future prospects for each NDT technique




NONDESTRUCTIVE TESTING (NDT)


Book Description

Nondestructive testing (NDT) is the process of inspecting, testing, or evaluating materials, components or assemblies for discontinuities, or differences in characteristics without destroying the serviceability of the part or system. In other words, when the inspection or test is completed the part can still be used. In contrast to NDT, other tests are destructive in nature and are therefore done on a limited number of samples ("lot sampling"), rather than on the materials, components or assemblies actually being put into service. These destructive tests are often used to determine the physical properties of materials such as impact resistance, ductility, yield and ultimate tensile strength, fracture toughness and fatigue strength, but discontinuities and differences in material characteristics are more effectively found by NDT. Today modern nondestructive tests are used in manufacturing, fabrication and in-service inspections to ensure product integrity and reliability, to control manufacturing processes, lower production costs and to maintain a uniform quality level. During construction, NDT is used to ensure the quality of materials and joining processes during the fabrication and erection phases, and in-service NDT inspections are used to ensure that the products in use continue to have the integrity necessary to ensure their usefulness and the safety of the public. It should be noted that while the medical field uses many of the same processes, the term "nondestructive testing" is generally not used to describe medical applications. Test method names often refer to the type of penetrating medium or the equipment used to perform that test. Current NDT methods are: Acoustic Emission Testing (AE), Electromagnetic Testing (ET), Laser Testing Methods (LM), Leak Testing (LT), Magnetic Flux Leakage (MFL), Liquid Penetrant Testing (PT), Magnetic Particle Testing (MT), Neutron Radiographic Testing (NR), Radiographic Testing (RT), Thermal/Infrared Testing (IR), Ultrasonic Testing (UT), Vibration Analysis (VA) and Visual Testing (VT). The six most frequently used test methods are MT, PT, RT, UT, ET and VT. Each of these test methods will be described here, followed by the other, less often used test methods.




Electrical and Magnetic Methods of Nondestructive Testing


Book Description

Electrical and Magnetic Methods of Nondestructive Testing presents a comprehensive account of the electrical and magnetic methods of nondestructive testing (NDT). The book begins with a discussion of the requirements for NDT and the criteria for the choice of a given method, followed by a summary of the general theory relating to electrical and magnetic testing techniques. Subsequent chapters discuss specific methods, including eddy current and flux-leakage techniques and microwave and potential drop methods. The appendix provides some useful programs for eddy current impedance analyses. These programs are in BASIC and can be run on PCs.




Review of Progress in Quantitative Nondestructive Evaluation


Book Description

These Proceedings, consisting of Parts A and B, contain the edited versions of most of the papers presented at the annual Review of Progress in Quantitative Nondestructive Evaluation held at Bowdoin College, Brunswick, Maine on July 28 to August 2, 1996. The Review was organized by the Center for NDE at Iowa State University, in cooperation with the American Society of Nondestructive Testing, the Ames Laboratory of the USDOE, the Federal Aviation Administration, the National Institute of Standardsand Technology, and the National Science Foundation Industry!University Cooperative Research Centers pro gram. This year's Review of Progress in QNDE was attended by approximately 400 participants from the U.S. and many foreign countries who presented over 350 papers. As usual, the meetingwas divided into 36 sessions, with as many as four sessions running concurrently. The Review covered all phases of NDE research and development from fundamental investigations to engineering applications or inspection systems, and it included many important methods of inspection techniques from acoustics to x-rays. In the last eight to ten years, the Review has stabilized at about its current size, which most participants seem to agree is large enough to permit a full-scale overview of the latest developments, but still small enough to retain the collegial atmosphere which has marked the Review since its inception.







The Proceedings of the International Conference on Sensing and Imaging, 2018


Book Description

This book proceedings collects ​a number of papers presented at the International Conference on Sensing and Imaging, which was held at Guangxi University of Science and Technology from October 15-18, 2018. Sensing and imaging is an interdisciplinary field covering a variety of sciences and techniques such as optics, electricity, magnetism, heat, sound, and computing technologies. The field has diverse applications of interest such as image processing techniques.The results in the book bridge the gap between theory and applications, translating techniques into better products. The text will appeal to students, professionals and researchers alike.




Nondestructive Characterization of Materials VIII


Book Description

Different physical models for the Snoek-type relaxation in ternary systems (Fe-C-Me) are analyzed from the viewpoint of a distance of interatomic interaction taken into account: For non-saturated from the viewpoint of overlapping of interatomic interaction in b.c.c. alloys the physically sufficient and optimal for the computer simulation is the short-range model, which takes into account the interatomic interaction and the average amount of substitutional atoms in the first coordination shell, only. For high alloyed b.c.c. systems (i.e. with the overlapped interatomic interaction) the carbon atom undergoes an interaction of a few substitutional atoms simultaneously. That leads to the appearance of one broadened Snoek peak. Activation energy of such a peak is summed from the "elastic" and "chemical" interatomic interactions. Experimental results for alloys with b.c.c. solid solution structure and its computer simulations allow to introduce the new criterion for the high alloy state of monophase steels: the high alloyed state corresponds to the situation when substitutional atoms can not be considered any longer as the isolated atoms. From the viewpoint of mechanical spectroscopy this situation corresponds to the appearance of one broadened IF Snoek-type peak instead of two peaks existed for the steels with lower substitutional atom concentration.