Microwave Photonics, Second Edition


Book Description

Microwave photonics continues to see rapid growth. The integration of optical fiber and wireless networks has become a commercial reality and is becoming increasingly pervasive. Such hybrid technology will lead to many innovative applications, including backhaul solutions for mobile networks and ultrabroadband wireless networks that can provide users with very high bandwidth services. Microwave Photonics, Second Edition systematically introduces important technologies and applications in this emerging field. It also reviews recent advances in micro- and millimeter-wavelength and terahertz-frequency systems. The book features contributions by leading international researchers, many of whom are pioneers in the field. They examine wave generation, measurement, detection, control, and propagation in detail, as well as the devices and components that enable ultrawide-band and ultrafast transmission, switching, and signal processing. These devices and components include optical-controlled microwave devices, optical transmitters, receivers, switching devices, detectors, and modulators. The book explores the theory, techniques, and technologies that are fueling applications such as radio-over-fiber, injection-locked semiconductor lasers, and terahertz photonics. Throughout, the contributors share insights on overcoming current limitations and on potential developments. What’s New in This Edition Two new chapters, on fiber Bragg gratings for microwave photonics applications and ultrawide-band sub-THz photonic wireless links Updates throughout, reflecting advances in the field New illustrations in each chapter Fully illustrated with more than 300 figures and tables, this book offers a detailed, wide-ranging overview of the current state and future directions of this burgeoning technology.




Microwave Photonics


Book Description

Wireless, optical, and electronic networks continue to converge, prompting heavy research into the interface between microwave electronics, ultrafast optics, and photonic technologies. New developments arrive nearly as fast as the photons under investigation, and their commercial impact depends on the ability to stay abreast of new findings, techni




Fundamentals of Microwave Photonics


Book Description

A comprehensive resource to designing and constructing analog photonic links capable of high RF performance Fundamentals of Microwave Photonics provides a comprehensive description of analog optical links from basic principles to applications. The book is organized into four parts. The first begins with a historical perspective of microwave photonics, listing the advantages of fiber optic links and delineating analog vs. digital links. The second section covers basic principles associated with microwave photonics in both the RF and optical domains. The third focuses on analog modulation formats—starting with a concept, deriving the RF performance metrics from basic physical models, and then analyzing issues specific to each format. The final part examines applications of microwave photonics, including analog receive-mode systems, high-power photodiodes applications, radio astronomy, and arbitrary waveform generation. Covers fundamental concepts including basic treatments of noise, sources of distortion and propagation effects Provides design equations in easy-to-use forms as quick reference Examines analog photonic link architectures along with their application to RF systems A thorough treatment of microwave photonics, Fundamentals of Microwave Photonics will be an essential resource in the laboratory, field, or during design meetings. The authors have more than 55 years of combined professional experience in microwave photonics and have published more than 250 associated works.




Microwave Photonics


Book Description

Microwave photonics continues to see rapid growth. The integration of optical fiber and wireless networks has become a commercial reality and is becoming increasingly pervasive. Such hybrid technology will lead to many innovative applications, including backhaul solutions for mobile networks and ultrabroadband wireless networks that can provide users with very high bandwidth services. Microwave Photonics, Second Edition systematically introduces important technologies and applications in this emerging field. It also reviews recent advances in micro- and millimeter-wavelength and terahertz-frequency systems. The book features contributions by leading international researchers, many of whom are pioneers in the field. They examine wave generation, measurement, detection, control, and propagation in detail, as well as the devices and components that enable ultrawide-band and ultrafast transmission, switching, and signal processing. These devices and components include optical-controlled microwave devices, optical transmitters, receivers, switching devices, detectors, and modulators. The book explores the theory, techniques, and technologies that are fueling applications such as radio-over-fiber, injection-locked semiconductor lasers, and terahertz photonics. Throughout, the contributors share insights on overcoming current limitations and on potential developments. What’s New in This Edition Two new chapters, on fiber Bragg gratings for microwave photonics applications and ultrawide-band sub-THz photonic wireless links Updates throughout, reflecting advances in the field New illustrations in each chapter Fully illustrated with more than 300 figures and tables, this book offers a detailed, wide-ranging overview of the current state and future directions of this burgeoning technology.




Fundamentals of Microwave Photonics


Book Description

A comprehensive resource to designing andconstructing analog photonic links capable of high RFperformance Fundamentals of Microwave Photonics provides acomprehensive description of analog optical links from basicprinciples to applications. The book is organized into fourparts. The first begins with a historical perspective of microwavephotonics, listing the advantages of fiber optic links anddelineating analog vs. digital links. The second section coversbasic principles associated with microwave photonics in both the RFand optical domains. The third focuses on analog modulationformats—starting with a concept, deriving the RF performancemetrics from basic physical models, and then analyzing issuesspecific to each format. The final part examines applications ofmicrowave photonics, including analog receive-mode systems,high-power photodiodes applications, radio astronomy, and arbitrarywaveform generation. Covers fundamental concepts including basic treatments ofnoise, sources of distortion and propagation effects Provides design equations in easy-to-use forms as quickreference Examines analog photonic link architectures along with theirapplication to RF systems A thorough treatment of microwave photonics, Fundamentals ofMicrowave Photonics will be an essential resource in thelaboratory, field, or during design meetings. The authors have more than 55 years of combined professionalexperience in microwave photonics and have published more than 250associated works.




Photonic Signal Processing, Second Edition


Book Description

This Second Edition of "Photonic Signal Processing" updates most recent R&D on processing techniques of signals in photonic domain from the fundamentals given in its first edition. Several modern techniques in Photonic Signal Processing (PSP) are described: Graphical signal flow technique to simplify the analysis of the photonic transfer functions, plus its insights into the physical phenomena of such processors. The resonance and interference of optical fields are presented by the poles and zeros of the optical circuits, respectively. Detailed design procedures for fixed and tunable optical filters. These filters, "brick-wall-like", now play a highly important role in ultra-broadband (100GBaud) to spectral shaping of sinc temporal response so as to generate truly Nyquist sampler of the received eye diagrams 3-D PSP allows multi-dimensional processing for highly complex optical signals Photonic differentiators and integrators for dark soliton generations. Optical dispersion compensating processors for ultra-long haul optical transmission systems. Some optical devices essentials for PSP. Many detailed PSP techniques are given in the chapters of this Second Edition.




Microwave Photonics


Book Description

Microwave photonics is an important interdisciplinary field that, amongst a host of other benefits, enables engineers to implement new functions in microwave systems. With contributions from leading experts, Microwave Photonics: Devices and Applications explores this rapidly developing discipline. It bridges a gap between microwave and photonic engineering, providing an accessible interpretation of the current available research material and a detailed introduction to various aspects of the area. Opening with an overview to the subject, this book covers direct modulation, photonic oscillators for THz signal generation, and terahertz sources. It takes a unique application- focused approach and describes: analogue fibre-optic links; fibre radio technology; microwave photonic signal processing; measurement of microwave photonic components, and; biomedical applications. This text is ideal for practising microwave and fibre optics communication engineers wishing to improve their knowledge, and for researchers and graduate students wanting an overview of the subject.




Fundamentals of Photonics


Book Description

Fundamentals of Photonics A complete, thoroughly updated, full-color third edition Fundamentals of Photonics, Third Edition is a self-contained and up-to-date introductory-level textbook that thoroughly surveys this rapidly expanding area of engineering and applied physics. Featuring a blend of theory and applications, coverage includes detailed accounts of the primary theories of light, including ray optics, wave optics, electromagnetic optics, and photon optics, as well as the interaction of light and matter. Presented at increasing levels of complexity, preliminary sections build toward more advanced topics, such as Fourier optics and holography, photonic-crystal optics, guided-wave and fiber optics, LEDs and lasers, acousto-optic and electro-optic devices, nonlinear optical devices, ultrafast optics, optical interconnects and switches, and optical fiber communications. The third edition features an entirely new chapter on the optics of metals and plasmonic devices. Each chapter contains highlighted equations, exercises, problems, summaries, and selected reading lists. Examples of real systems are included to emphasize the concepts governing applications of current interest. Each of the twenty-four chapters of the second edition has been thoroughly updated.




Introduction to Microelectromechanical Microwave Systems


Book Description

Annotation The second edition covers the latest in fabrication technologies, actuation mechanisms, packaging, switching, resonator design, and microwave and wireless applications. This practical book steers readers past the drawbacks and towards the benefits of integrating RF/microwave MEMS into communications equipment




Diode Lasers and Photonic Integrated Circuits


Book Description

Diode Lasers and Photonic Integrated Circuits, Second Edition provides a comprehensive treatment of optical communication technology, its principles and theory, treating students as well as experienced engineers to an in-depth exploration of this field. Diode lasers are still of significant importance in the areas of optical communication, storage, and sensing. Using the the same well received theoretical foundations of the first edition, the Second Edition now introduces timely updates in the technology and in focus of the book. After 15 years of development in the field, this book will offer brand new and updated material on GaN-based and quantum-dot lasers, photonic IC technology, detectors, modulators and SOAs, DVDs and storage, eye diagrams and BER concepts, and DFB lasers. Appendices will also be expanded to include quantum-dot issues and more on the relation between spontaneous emission and gain.