Microwave Superconductivity


Book Description

Detailed coverage of all aspects of microwave superconductivity: fundamentals, fabrication, measurement, components, circuits, cryogenic packaging and market potential. Both a graduate-level textbook and a reference for microwave engineers. Applications (with either active or passive circuit elements) include those at both liquid-helium and liquid-nitrogen temperatures. Topics covered include wireless communications, space-based cryoelectronics, SQUIDs and SQUID amplifiers, NMR and MRI coils, accelerator cavities, and Josephson flux-flow devices.




Electrodynamics of Solids and Microwave Superconductivity


Book Description

This book presents the interdisciplinary field of solid electrodynamics and its applications in superconductor and microwave technologies. It gives scientists and engineers the foundation necessary to deal with theoretical and applied electromagnetics, continuum mechanics, applied superconductivity, high-speed electronic circuit design, microwave engineering and transducer technology.




High-Temperature-Superconductor Thin Films at Microwave Frequencies


Book Description

The book develops a comprehensive understanding of the surface impedance of the oxide high-temperature superconductors in comparison with the conventional superconductor Nb3Sn. Linear and nonlinear microwave responses are treated separately, both in terms of models, theories or numerical approaches and in terms of experimental results. The theoretical treatment connects fundamental aspects of superconductivity to the specific high-frequency properties. The experimental data review the state of the art, as reported by many international groups. The book describes further the main features of appropriate preparation, handling, mounting, and refrigeration techniques, and finally discusses possible applications in passive and active microwave devices.







Microwave Analysis of Unconventional Superconductors with Coplanar-Resonator Techniques


Book Description

This book provides a thorough overview of methods and approaches to the experimental characterization of superconductors at microwave frequencies, and includes a detailed description of the two main techniques, both based on the use of coplanar waveguide resonators, that the authors employed to investigate the properties of unconventional superconductors. In the second part several case studies are described, covering a large spectrum of materials and issues. Particular emphasis is given to recent hot topics concerning iron-based superconductors, both of fundamental nature and relevant for applications. The book is intended as a learning tool for researchers in the field, and serves as a guide providing inspiring examples of the use of coplanar resonator techniques to address key topics in the field of unconventional superconductivity.




Electrodynamics of Solids and Microwave Superconductivity


Book Description

This book presents the interdisciplinary field of solid electrodynamics and its applications in superconductor and microwave technologies. It gives scientists and engineers the foundation necessary to deal with theoretical and applied electromagnetics, continuum mechanics, applied superconductivity, high-speed electronic circuit design, microwave engineering and transducer technology.




Handbook of Superconductivity


Book Description

This is the last of three volumes of the extensively revised and updated second edition of the Handbook of Superconductivity. The past twenty years have seen rapid progress in superconducting materials, which exhibit one of the most remarkable physical states of matter ever to be discovered. Superconductivity brings quantum mechanics to the scale of the everyday world. Viable applications of superconductors rely fundamentally on an understanding of these intriguing phenomena and the availability of a range of materials with bespoke properties to meet practical needs. While the first volume covers fundamentals and various classes of materials, the second addresses processing of these into various shapes and configurations needed for applications, and ends with chapters on refrigeration methods necessary to attain the superconducting state and the desired performance. This third volume starts with a wide range of methods permitting one to characterize both the materials and various end products of processing. Subsequently, diverse classes of both large scale and electronic applications are described. Volume 3 ends with a glossary relevant to all three volumes. Key Features: Covers the depth and breadth of the field Includes contributions from leading academics and industry professionals across the world Provides hands-on familiarity with the characterization methods and offers descriptions of representative examples of practical applications A comprehensive reference, the handbook is suitable for both graduate students and practitioners in experimental physics, materials science, and multiple engineering disciplines, including electronic and electrical, chemical, mechanical, metallurgy and others.




High Temperature Superconductivity 2


Book Description

In contrast to research on the fundamental mechanisms of High-Temperature Superconductivity, in recent years we have seen enormous developments in the fabrication and application of High-Tc-superconductors. The two volumes of High Temperature Superconductivity provide a survey of the state of the technology and engineering applications of these materials. They comprise extended original research papers and technical review articles written by physicists, chemists, materials scientists and engineers, all of them noted experts in their fields. The interdisciplinary and strictly application-oriented coverage should benefit graduate students and academic researchers in the mentioned areas as well as industrial experts. Volume 1 "Materials" focuses on major technical advancements in High-Tc materials processing for applications. Volume 2 "Engineering Applications" covers numerous application areas where High-Tc superconductors are making tremendous impact.




High Temperature Superconductivity 2


Book Description

In contrast to research on the fundamental mechanisms of High-Temperature Superconductivity, in recent years we have seen enormous developments in the fabrication and application of High-Tc-superconductors. The two volumes of High Temperature Superconductivity provide a survey of the state of the technology and engineering applications of these materials. They comprise extended original research papers and technical review articles written by physicists, chemists, materials scientists and engineers, all of them noted experts in their fields. The interdisciplinary and strictly application-oriented coverage should benefit graduate students and academic researchers in the mentioned areas as well as industrial experts. Volume 1 "Materials" focuses on major technical advancements in High-Tc materials processing for applications. Volume 2 "Engineering Applications" covers numerous application areas where High-Tc superconductors are making tremendous impact.




Superconducting Materials


Book Description

This book presents an overview of the science of superconducting materials. It covers the fundamentals and theories of superconductivity. Subjects of special interest involving mechanisms of high temperature superconductors, tunneling, transport properties, magnetic properties, critical states, vortex dynamics, etc. are present in the book. It assists as a fundamental resource on the developed methodologies and techniques involved in the synthesis, processing, and characterization of superconducting materials. The book covers numerous classes of superconducting materials including fullerenes, borides, pnictides or iron-based chalcogen superconductors ides, alloys and cuprate oxides. Their crystal structures and properties are described. Thereafter, the book focuses on the progress of the applications of superconducting materials into superconducting magnets, fusion reactors, and accelerators and other superconducting magnets. The applications also cover recent progress in superconducting wires, power generators, powerful energy storage devices, sensitive magnetometers, RF and microwave filters, fast fault current limiters, fast digital circuits, transport vehicles, and medical applications.