Millimeter Wave Link Configuration Robust to Radio Frequency Impairments


Book Description

Millimeter wave (mmWave) bands offer several gigahertz of bandwidth that can support high data rate applications. To efficiently use the spectrum at mmWave frequencies, the wireless link between the transmitting and receiving radios must be configured properly. The link configuration problem at mmWave, however, is challenging due to the use of large antenna arrays and radio frequency (RF) impairments that are less severe in common lower frequency systems. Some of these impairments include the low resolution of RF phase shifters, carrier frequency offset, and the misfocus effect in near field systems with large arrays. An important characteristic of mmWave multiple-input multiple-output (MIMO) channels is sparsity. The sparse nature of such channels has allowed the use of compressed sensing (CS) for fast link configuration through channel estimation or beam alignment. CS techniques usually involve random sensing matrices to acquire a compressed channel representation and an optimization algorithm to estimate the sparse channel. Unfortunately, common random CS matrices result in poor link configuration under RF impairments. In the first part of this dissertation, we construct a new class of CS matrices that achieve robustness to the low resolution of RF phase shifters and the carrier frequency offset. To aid our construction, we propose a framework called FALP and develop an algorithm called Swift-Link within this framework. Swift-Link achieves better beam alignment than standard CS-based solutions at a reduced computational complexity. In the second part of this dissertation, we investigate the misfocus effect in near field beamforming. The beams in a near field communication scenario can focus RF signals in a spatial region called the focal point. The focal point, however, changes with the frequency of operation in a wideband phased array that uses a center frequency-based beamformer. This effect called misfocus, reduces the effective operating bandwidth of the near field system. To mitigate the misfocus effect, we propose a technique called InFocus that constructs beams which are well suited for massive wideband phased arrays. InFocus enables massive wideband phased array-based radios to achieve a higher data rate than comparable beamforming solutions




Analysis and Optimization for Robust Millimeter-Wave Communications


Book Description

Spectrum scarcity is a longstanding problem in mobile telecommunications networks. Specifically, accommodating the ever-growing data rate and communications demand in the extensively used spectrum between 800 MHz and 6 GHz is becoming more challenging. For this reason, in the last years, communications in the millimeterwave (mm-wave) frequency range (30-300 GHz) have attracted the interest of many researchers, who consider mm-wave communications a key enabler for upcoming generations of mobile communications, i.e., 5G and 6G. However, the signal propagation in the mm-wave frequency range is subject to more challenging conditions. High path loss and penetration loss may lead to short-range communications and frequent transmission interruptions when the signal path between the transmitter and the receiver is blocked. In this dissertation, we analyze and optimize techniques that enhance the robustness and reliability of mm-wave communications. In the first part, we focus on approaches that allow user equipment (UE) to establish and maintain connections with multiple access points (APs) or relays, i.e., multi-connectivity (MC) and relaying techniques, to increase link failure robustness. In such scenarios, an inefficient link scheduling, i.e., over or under-provisioning of connections, can lead to either high interference and energy consumption or unsatisfied user’s quality of service (QoS) requirements. In the first paper, we propose a novel link scheduling algorithm for network throughput maximization with constrained resources and quantify the potential gain of MC. As a complementary approach, in the second paper, we solve the problem of minimizing allocated resources while satisfying users’ QoS requirements for mm-wave MC scenarios. To deal with the channel uncertainty and abrupt blockages, we propose a learning-based solution, of which the results highlight the tradeoff between reliability and allocated resource. In the third paper, we perform throughput and delay analysis of a multi-user mm-wave wireless network assisted by a relay. We show the benefits of cooperative networking and the effects of directional communications on relay-aided mm-wave communications. These, as highlighted by the results, are characterized by a tradeoff between throughput and delay and are highly affected by the beam alignment duration and transmission strategy (directional or broadcast). The second part of this dissertation focuses on problems related to mm-wave communications in industrial scenarios, where robots and new industrial applications require high data rates, and stringent reliability and latency requirements. In the fourth paper, we consider a multi-AP mm-wave wireless network covering an industrial plant where multiple moving robots need to be connected. We show how the joint optimization of robots’ paths and the robot-AP associations can increase mm-wave robustness by decreasing the number of handovers and avoiding coverage holes. Finally, the fifth paper considers scenarios where robot-AP communications are assisted by an intelligent reflective surface (IRS). We show that the joint optimization of beamforming and trajectory of the robot can minimize the motion energy consumption while satisfying time and communication QoS constraints. Moreover, the proposed solution exploits a radio map to prevent collisions with obstacles and to increase mm-wave communication robustness by avoiding poorly covered areas.




Millimeter-Wave Antennas: Configurations and Applications


Book Description

This book comprehensively reviews the state of the art in millimeter-wave antennas, traces important recent developments and provides information on a wide range of antenna configurations and applications. While fundamental theoretical aspects are discussed whenever necessary, the book primarily focuses on design principles and concepts, manufacture, measurement techniques, and practical results. Each of the various antenna types scalable to millimeter-wave dimensions is considered individually, with coverage of leaky-wave and surface-wave antennas, printed antennas, integrated antennas, and reflector and lens systems. The final two chapters address the subject from a systems perspective, providing an overview of supporting circuitry and examining in detail diverse millimeter-wave applications, including high-speed wireless communications, radio astronomy, and radar. The vast amount of information now available on millimeter-wave systems can be daunting for researchers and designers entering the field. This book offers readers essential guidance, helping them to gain a thorough understanding based on the most recent research findings and serving as a sound basis for informed decision-making.




Microwave and Millimeter Wave Circuits and Systems


Book Description

Microwave and Millimeter Wave Circuits and Systems: Emerging Design, Technologies and Applications provides a wide spectrum of current trends in the design of microwave and millimeter circuits and systems. In addition, the book identifies the state-of-the art challenges in microwave and millimeter wave circuits systems design such as behavioral modeling of circuit components, software radio and digitally enhanced front-ends, new and promising technologies such as substrate-integrated-waveguide (SIW) and wearable electronic systems, and emerging applications such as tracking of moving targets using ultra-wideband radar, and new generation satellite navigation systems. Each chapter treats a selected problem and challenge within the field of Microwave and Millimeter wave circuits, and contains case studies and examples where appropriate. Key Features: Discusses modeling and design strategies for new appealing applications in the domain of microwave and millimeter wave circuits and systems Written by experts active in the Microwave and Millimeter Wave frequency range (industry and academia) Addresses modeling/design/applications both from the circuit as from the system perspective Covers the latest innovations in the respective fields Each chapter treats a selected problem and challenge within the field of Microwave and Millimeter wave circuits, and contains case studies and examples where appropriate This book serves as an excellent reference for engineers, researchers, research project managers and engineers working in R&D, professors, and post-graduates studying related courses. It will also be of interest to professionals working in product development and PhD students.




Millimeter Wave Wireless Communications


Book Description

The Definitive, Comprehensive Guide to Cutting-Edge Millimeter Wave Wireless Design “This is a great book on mmWave systems that covers many aspects of the technology targeted for beginners all the way to the advanced users. The authors are some of the most credible scholars I know of who are well respected by the industry. I highly recommend studying this book in detail.” —Ali Sadri, Ph.D., Sr. Director, Intel Corporation, MCG mmWave Standards and Advanced Technologies Millimeter wave (mmWave) is today's breakthrough frontier for emerging wireless mobile cellular networks, wireless local area networks, personal area networks, and vehicular communications. In the near future, mmWave products, systems, theories, and devices will come together to deliver mobile data rates thousands of times faster than today's existing cellular and WiFi networks. In Millimeter Wave Wireless Communications, four of the field's pioneers draw on their immense experience as researchers, entrepreneurs, inventors, and consultants, empowering engineers at all levels to succeed with mmWave. They deliver exceptionally clear and useful guidance for newcomers, as well as the first complete desk reference for design experts. The authors explain mmWave signal propagation, mmWave circuit design, antenna designs, communication theory, and current standards (including IEEE 802.15.3c, Wireless HD, and ECMA/WiMedia). They cover comprehensive mmWave wireless design issues, for 60 GHz and other mmWave bands, from channel to antenna to receiver, introducing emerging design techniques that will be invaluable for research engineers in both industry and academia. Topics include Fundamentals: communication theory, channel propagation, circuits, antennas, architectures, capabilities, and applications Digital communication: baseband signal/channel models, modulation, equalization, error control coding, multiple input multiple output (MIMO) principles, and hardware architectures Radio wave propagation characteristics: indoor and outdoor applications Antennas/antenna arrays, including on-chip and in-package antennas, fabrication, and packaging Analog circuit design: mmWave transistors, fabrication, and transceiver design approaches Baseband circuit design: multi–gigabit-per-second, high-fidelity DAC and ADC converters Physical layer: algorithmic choices, design considerations, and impairment solutions; and how to overcome clipping, quantization, and nonlinearity Higher-layer design: beam adaptation protocols, relaying, multimedia transmission, and multiband considerations 60 GHz standardization: IEEE 802.15.3c for WPAN, Wireless HD, ECMA-387, IEEE 802.11ad, Wireless Gigabit Alliance (WiGig)







RF Imperfections in High-rate Wireless Systems


Book Description

This is one of the first books on the emerging research topic of digital compensation of RF imperfections. The book presents a new multidisciplinary vision on the design of wireless communication systems. In this approach the imperfections of the RF front-ends are accepted and digital signal processing algorithms are designed to suppress their impact on system performance. The book focuses on multiple-antenna orthogonal frequency division multiplexing (MIMO OFDM).







Introduction to RF Propagation


Book Description

An introduction to RF propagation that spans all wireless applications This book provides readers with a solid understanding of the concepts involved in the propagation of electromagnetic waves and of the commonly used modeling techniques. While many books cover RF propagation, most are geared to cellular telephone systems and, therefore, are limited in scope. This title is comprehensive-it treats the growing number of wireless applications that range well beyond the mobile telecommunications industry, including radar and satellite communications. The author's straightforward, clear style makes it easy for readers to gain the necessary background in electromagnetics, communication theory, and probability, so they can advance to propagation models for near-earth, indoor, and earth-space propagation. Critical topics that readers would otherwise have to search a number of resources to find are included: * RF safety chapter provides a concise presentation of FCC recommendations, including application examples, and prepares readers to work with real-world propagating systems * Antenna chapter provides an introduction to a wide variety of antennas and techniques for antenna analysis, including a detailed treatment of antenna polarization and axial ratio; the chapter contains a set of curves that permit readers to estimate polarization loss due to axial ratio mismatch between transmitting and receiving antennas without performing detailed calculations * Atmospheric effects chapter provides curves of typical atmospheric loss, so that expected loss can be determined easily * Rain attenuation chapter features a summary of how to apply the ITU and Crane rain models * Satellite communication chapter provides the details of earth-space propagation analysis including rain attenuation, atmospheric absorption, path length determination and noise temperature determination Examples of widely used models provide all the details and information needed to allow readers to apply the models with confidence. References, provided throughout the book, enable readers to explore particular topics in greater depth. Additionally, an accompanying Wiley ftp site provides supporting MathCad files for select figures in the book. With its emphasis on fundamentals, detailed examples, and comprehensive coverage of models and applications, this is an excellent text for upper-level undergraduate or graduate students, or for the practicing engineer who needs to develop an understanding of propagation phenomena.




Radio Wave Propagation and Channel Modeling for Earth-Space Systems


Book Description

The accurate design of earth–space systems requires a comprehensive understanding of the various propagation media and phenomena that differ depending on frequencies and types of applications. The choice of the relevant channel models is crucial in the design process and constitutes a key step in performance evaluation and testing of earth–space systems. The subject of this book is built around the two characteristic cases of satellite systems: fixed satellites and mobile satellite systems. Radio Wave Propagation and Channel Modeling for Earth–Space Systems discusses the state of the art in channel modeling and characterization of next-generation fixed multiple-antennas and mobile satellite systems, as well as propagation phenomena and fade mitigation techniques. The frequencies of interest range from 100 MHz to 100 GHz (from VHF to W band), whereas the use of optical free-space communications is envisaged. Examining recent research advances in space-time tropospheric propagation fields and optical satellite communication channel models, the book covers land mobile multiple antennas satellite- issues and relative propagation campaigns and stratospheric channel models for various applications and frequencies. It also presents research and well-accepted satellite community results for land mobile satellite and tropospheric attenuation time-series single link and field synthesizers. The book examines aeronautical communications channel characteristics and modeling, relative radio wave propagation campaigns, and stratospheric channel model for various applications and frequencies. Propagation effects on satellite navigation systems and the corresponding models are also covered.