Proxies in Late Cenozoic Paleoceanography


Book Description

The present volume is the first in a series of two books dedicated to the paleoceanography of the Late Cenozoic ocean. The need for an updated synthesis on paleoceanographic science is urgent, owing to the huge and very diversified progress made in this domain during the last decade. In addition, no comprehensive monography still exists in this domain. This is quite incomprehensible in view of the contribution of paleoceanographic research to our present understanding of the dynamics of the climate-ocean system. The focus on the Late Cenozoic ocean responds to two constraints. Firstly, most quantitative methods, notably those based on micropaleontological approaches, cannot be used back in time beyond a few million years at most. Secondly, the last few million years, with their strong climate oscillations, show specific high frequency changes of the ocean with a relatively reduced influcence of tectonics. The first volume addresses quantitative methodologies to reconstruct the dynamics of the ocean andthe second, major aspects of the ocean system (thermohaline circulation, carbon cycle, productivity, sea level etc.) and will also present regional synthesis about the paleoceanography of major the oceanic basins. In both cases, the focus is the "open ocean leaving aside nearshore processes that depend too much onlocal conditions. In this first volume, we have gathered up-to-date methodologies for the measurement and quantitative interpretation of tracers and proxies in deep sea sediments that allow reconstruction of a few key past-properties of the ocean( temperature, salinity, sea-ice cover, seasonal gradients, pH, ventilation, oceanic currents, thermohaline circulation, and paleoproductivity). Chapters encompass physical methods (conventional grain-size studies, tomodensitometry, magnetic and mineralogical properties), most current biological proxies (planktic and benthic foraminifers, deep sea corals, diatoms, coccoliths, dinocysts and biomarkers) and key geochemical tracers (trace elements, stable isotopes, radiogenic isotopes, and U-series). Contributors to the book and members of the review panel are among the best scientists in their specialty. They represent major European and North American laboratories and thus provide a priori guarantees to the quality and updat of the entire book. Scientists and graduate students in paleoclimatology, paleoceanography, climate modeling, and undergraduate and graduate students in marine geology represent the target audience. This volume should be of interest for scientists involved in several international programs, such as those linked to the IPCC (IODP – Integrated Ocean Drilling Program; PAGES – Past Global Changes; IMAGES – Marine Global Changes; PMIP: Paleoclimate Intercomparison Project; several IGCP projects etc.), That is, all programs that require access to time series illustrating changes in the climate-ocean system. - Presents updated techniques and methods in paleoceanography - Reviews the state-of-the-art interpretation of proxies used for quantitative reconstruction of the climate-ocean system - Acts as a supplement for undergraduate and graduate courses in paleoceanography and marine geology










Marine Research


Book Description




Minerals and Mineraloids in Marine Sediments


Book Description

Over 60% of the Earth's surface is covered with deep marine sediments, however, until the early 1980s, no comprehensive text books appeared to support the rapid expansion in the study of these sediments. While the whole field of marine geology has expanded enormously and entirely new disciplines, such as paleoceanography, have been developed, there remains a lack of reference texts on study techniques that investigators in the marine community can turn to. Minerals and Mineraloids in Marine Sediments is an optical identifica tion guide that I believe will become a standard reference text for use in the microscope analysis of marine sediment& and sedimentary rocks. The systematic collection of sediment cores from the deep ocean floor began in earnest with the Swedish Deep Sea Expedition, 1947-1948. Much of the microscopic examination of the sediments collected in these piston cores (10 m+ long) was conducted on separated grain mounts or thin sections of impregnated sediments. By the late 1960s a simpler technique of examining a mounted smear of the cored silt and clay size sediment on a microscope slide had become standard practice in American oceanographic institutions. This semi quantitative technique became the standard tool used in core description aboard Glomar Challenger through the 15 years of the Deep Sea Drilling Project (DSDP), 1968-1983. Visual percentage estimates of biogenic and mineral components were made using petrologic micro scopes.




Marine Geology and Oceanography of the Pacific Manganese Nodule Province


Book Description

Deep-sea manganese nodules, once an obscure scientific curios ity, have, in the brief span of two decades, become a potential mineral resource of major importance. Nodules that cover the sea floor of the tropical North Pacific may represent a vast ore de posit of manganese, nickel, cobalt, and copper. Modern technology has apparently surmounted the incredible problem of recovering nodules in water depths of 5000 meters and the extraction of metals from the complex chemical nodule matrix is a reality. Both the recovery and the extraction appear to be economically feasible. Exploitation of this resource is, however, hindered more by the lack of an international legal structure allowing for recognition of mining sites and exploitation rights, than by any other factor. Often, when a mineral deposit becomes identified as an ex ploitable resource, scientific study burgeons. Interest in the nature and genesis of the deposit increases and much is learned from large scale exploration. The case is self evident for petrol eum and ore deposits on land. The study of manganese nodules is just now entering this phase. What was the esoteric field of a few scientists has become the subject of active exploration and research by most of the industrialized nations. Unfortunately for our general understanding of manganese nodules, exploration results remain largely proprietary. However, scientific study has greatly increased and the results are becoming widely available.