Physical Processes in a Long Narrow Deep Lake


Book Description

Understanding the transport processes in lakes and other aquatic systems is vitally important since much of the living biomass is transported by the water, along with nutrients, contaminants, suspended particles, and other materials important to biogeochemical processes. The hydrodynamic processes therefore determine the environmental conditions that affect the biogeochemistry. The physical processes that control the hydrodynamics of large lakes are complex, and depend on a balance of characteristics of the lake (geometry, stratification, etc.) and forcing conditions (meteorological, hydrological) that change over various spatial and temporal scales. Using data from several extensive field campaigns, including measurements of velocity and thermal structure at multiple locations over several seasons, an extensive set of CTD data, and a 15 year long bi-weekly water quality dataset at multiple locations, we analyze the physical forces controlling the dynamics of a large, narrow and deep lake, and the response of the lake to these forces. The study site is Cayuga Lake, the second largest of the Finger Lakes of central New York State, USA (latitude 43N). It is a long (60 km), narrow (less than 6 km) and deep (maximum 130 m) lake. The bathymetry at the south end of the lake slopes up to a shallow shelf, not unlike a coastal estuary, which receives discharges from both natural and anthropogenic sources, and on which sharp spatial and temporal gradients in water quality exist. The geometry of the lake and the prevailing winds in the region lead to the generation of large amplitude internal waves, which develop to be highly nonlinear. Shoaling of these waves on the southern shelf are shown to lead to the intermittent upwelling of hypolim- netic water on to the shelf, creating sharp spatial gradients in water quality (e.g., TP and chlorophyll-a concentrations) on the shelf. We analyze the internal wave field of the lake and the nonlinear processes associated with it, and the factors that lead to the sharp spatial gradients observed on the shelf. We show that a subtle balance of forces controls mixing and transport in the various regions of the lake and propose an explanation for a persistent anomaly in chlorophyll-a concentration observed in one region of the lake.




Mixing processes in lakes


Book Description
















Ecology of Meromictic Lakes


Book Description

This volume presents recent advances in the research on meromictic lakes and a state-of-the art overview of this area. After an introduction to the terminology and geographic distribution of meromictic lakes, three concise chapters describe their physical, chemical and biological features. The following eight chapters present case studies of more than a dozen meromictic lakes, showing the variety of physical and biochemical processes that promote meromixis. The result is a broad picture of the ecology and biochemistry of meromictic lakes in tropical and cold regions, in man-made pit lakes and euxinic marine lakes, and in freshwater as well as hypersaline lakes. In the final chapter the editors provide a synthesis of the topic and conclude that the study of meromictic lakes also offers new insights into the limnology of inland lakes. The book appeals to researchers in the fields of ecology, limnology, environmental physics and biophysics.







Encyclopedia of Lakes and Reservoirs


Book Description

Lakes and reservoirs hold about 90% of the world's surface fresh water, but overuse, water withdrawal and pollution of these bodies puts some one billion people at risk. The Encyclopedia of Lakes and Reservoirs reviews the physical, chemical and ecological characteristics of lakes and reservoirs, and describes their uses and environmental state trends in different parts of the world. Superbly illustrated throughout, it includes some 200 entries in a range of topics, including acidification, artificialisation, canals, climate change effects, dams, dew ponds, drainage, eutrofication, evaporation, fisheries, hydro-electric power, nutrients, organic pollution, paleolimnology, reservoir capacities and depths, sedimentation, water resources and more.