UV Solid-State Light Emitters and Detectors


Book Description

Infrared and visible light LEDs and photodetectors have found numerous applications and have become a truly enabling technology. The promise of solid state lighting has invigorated interest in white light LEDs. Ultraviolet LEDs and solar blind photodetectors represent the next frontier in solid state emitters and hold promise for many important applications in biology, medi cine, dentistry, solid state lighting, displays, dense data storage, and semi conductor manufacturing. One of the most important applications is in sys tems for the identification of hazardous biological agents. Compared to UV lamps, UV LEDs have lower power consumption, a longer life, compactness, and sharper spectral lines. UV LEDs can provide a variety of UV spectra and have shape and form factor flexibility and rugged ness. Using conventional phosphors, UV LEDs can generate white light with high CRI and high efficiency. If quantum cutter phosphors are developed, white light generation by UV LEDs might become even more efficient. Advances in semiconductor materials and in improved light extraction techniques led to the development of a new generation of efficient and pow erful visible high-brightness LEDs and we expect that similar improvements will be achieved in solid-state UV technology.




Optoelectronic Devices


Book Description

Tremendous progress has been made in the last few years in the growth, doping and processing technologies of the wide bandgap semiconductors. As a result, this class of materials now holds significant promis for semiconductor electronics in a broad range of applications. The principal driver for the current revival of interest in III-V Nitrides is their potential use in high power, high temperature, high frequency and optical devices resistant to radiation damage. This book provides a wide number of optoelectronic applications of III-V nitrides and covers the entire process from growth to devices and applications making it essential reading for those working in the semiconductors or microelectronics. Broad review of optoelectronic applications of III-V nitrides




Iii-Nitride Devices and Nanoengineering


Book Description

Devices, nanoscale science and technologies based on GaN and related materials, have achieved great developments in recent years. New GaN-based devices such as UV detectors, fast p-HEMT and microwave devices are developed far more superior than other semiconductor materials-based devices.Written by renowned experts, the review chapters in this book cover the most important topics and achievements in recent years, discuss progress made by different groups, and suggest future directions. Each chapter also describes the basis of theory and experiment.This book is an invaluable resource for device design and processing engineers, material growers and evaluators, postgraduates and scientists as well as newcomers in the GaN field.




UV Solid-State Light Emitters and Detectors


Book Description

Infrared and visible light LEDs and photodetectors have found numerous applications and have become a truly enabling technology. The promise of solid state lighting has invigorated interest in white light LEDs. Ultraviolet LEDs and solar blind photodetectors represent the next frontier in solid state emitters and hold promise for many important applications in biology, medi cine, dentistry, solid state lighting, displays, dense data storage, and semi conductor manufacturing. One of the most important applications is in sys tems for the identification of hazardous biological agents. Compared to UV lamps, UV LEDs have lower power consumption, a longer life, compactness, and sharper spectral lines. UV LEDs can provide a variety of UV spectra and have shape and form factor flexibility and rugged ness. Using conventional phosphors, UV LEDs can generate white light with high CRI and high efficiency. If quantum cutter phosphors are developed, white light generation by UV LEDs might become even more efficient. Advances in semiconductor materials and in improved light extraction techniques led to the development of a new generation of efficient and pow erful visible high-brightness LEDs and we expect that similar improvements will be achieved in solid-state UV technology.




Handbook of Optical Microcavities


Book Description

An optical cavity confines light within its structure and constitutes an integral part of a laser device. Unlike traditional gas lasers, semiconductor lasers are invariably much smaller in dimensions, making optical confinement more critical than ever. In this book, modern methods that control and manipulate light at the micrometer and nanometer scales by using a variety of cavity geometries and demonstrate optical resonance from ultra-violet (UV) to infra-red (IR) bands across multiple material platforms are explored. The book has a comprehensive collection of chapters that cover a wide range of topics pertaining to resonance in optical cavities and are contributed by leading researchers in the field. The topics include theory, design, simulation, fabrication, and characterization of micrometer- and nanometer-scale structures and devices that support cavity resonance via various mechanisms such as Fabry–Pérot, whispering gallery, photonic bandgap, and plasmonic modes. The chapters discuss optical cavities that resonate from UV to IR wavelengths and are based on prominent III-V material systems, including Al, In, and Ga nitrides, ZnO, and GaAs.




Light-Emitting Diodes and Photodetectors


Book Description

This book provides a detailed overview of the most recent advances in the fascinating world of light-emitting diodes (LEDs), organic light-emitting diodes (OLEDs), and photodetectors (PDs). Chapters in Section 1 discuss the different types and designs of LEDs/OLEDs and their use in light output, color rendering, and more. Chapters in Section 2 examine innovative structures, emerging materials, and physical effects of PDs. This book is a useful resource for students and scientists working in the field of photonics and advanced technologies.










Investigation of III-Nitride Alloys for Ultraviolet Photodetectors and Blue-Green Lasers


Book Description

This AASERT contract was intended to support one graduate and one undergraduate students for three years, with the objective of conducting research work on the growth and characterization of wide bandgap GaN based semiconductors for ultraviolet photodetectors and visible light emitters. The research was directed toward optimizing the metalorganic chemical vapor deposition (MOCVD) growth and characterization of undoped, n-type and p-type doped wide bandgap GaN and AlxGa1-xN semiconductors, for x ranging from 0 to 1, on sapphire substrates. The optical and electrical properties of GaN grown using two different organometallic precursors, TMGa and TEGa, have been compared. The fabrication and characterization of GaN and GaN:Mg MSM photodetectors, with high speed and visible rejection is reported. GaN p-i-n photodiodes with a UV-to- visible rejection ratio of 6 orders of magnitude were demonstrated. The responsivity of these devices was analytically modeled and allowed the extraction of the minority carrier diffusion length for electrons in the p-type GaN material. Highly efficient AlxGa1-xN based visible blind and solar blind p-i-n photodiodes have been demonstrated which cover the widest spectral range ever reported, form 225 to 362 nm. By varying the doping of the GaInN active layer in GaInN/GaN double heterostructures, blue (525 nm) and green (560 nm) light emitting diodes were demonstrated and characterized.