Model Checking Quantum Systems


Book Description

Model checking is one of the most successful verification techniques and has been widely adopted in traditional computing and communication hardware and software industries. This book provides the first systematic introduction to model checking techniques applicable to quantum systems, with broad potential applications in the emerging industry of quantum computing and quantum communication as well as quantum physics. Suitable for use as a course textbook and for self-study, graduate and senior undergraduate students will appreciate the step-by-step explanations and the exercises included. Researchers and engineers in the related fields can further develop these techniques in their own work, with the final chapter outlining potential future applications.




Model Checking Quantum Systems


Book Description

The first book introducing computer aided verification techniques for quantum systems with quantum computing and communication hardware.







Foundations of Quantum Programming


Book Description

Quantum computers promise dramatic advantages in processing speed over currently available computer systems. Quantum computing offers great promise in a wide variety of computing and scientific research, including Quantum cryptography, machine learning, computational biology, renewable energy, computer-aided drug design, generative chemistry, and any scientific or enterprise application that requires computation speed or reach beyond the limits of current conventional computer systems. Foundations of Quantum Programming, Second Edition discusses how programming methodologies and technologies developed for current computers can be extended for quantum computers, along with new programming methodologies and technologies that can effectively exploit the unique power of quantum computing. The Second Edition includes two new chapters describing programming models and methodologies for parallel and distributed quantum computers. The author has also included two new chapters to introduce Quantum Machine Learning and its programming models – parameterized and differential quantum programming. In addition, the First Edition's preliminaries chapter has been split into three chapters, with two sections for quantum Turing machines and random access stored program machines added to give the reader a more complete picture of quantum computational models. Finally, several other new techniques are introduced in the Second Edition, including invariants of quantum programs and their generation algorithms, and abstract interpretation of quantum programs. Demystifies the theory of quantum programming using a step-by-step approach Includes methodologies, techniques, and tools for the development, analysis, and verification of quantum programs and quantum cryptographic protocols Covers the interdisciplinary nature of quantum programming by providing preliminaries from quantum mechanics, mathematics, and computer science, and pointing out its potential applications to quantum engineering and physics Presents a coherent and self-contained treatment that will be valuable for academic and industrial researchers and developers Adds new developments such as parallel and distributed quantum programming; and introduces several new program analysis techniques such as invariants generation and abstract interpretation




Computer Aided Verification


Book Description




Formal Methods


Book Description

This book constitutes the refereed proceedings of the 24th Symposium on Formal Methods, FM 2021, held virtually in November 2021. The 43 full papers presented together with 4 invited presentations were carefully reviewed and selected from 131 submissions. The papers are organized in topical sections named: Invited Presentations. - Interactive Theorem Proving, Neural Networks & Active Learning, Logics & Theory, Program Verification I, Hybrid Systems, Program Verification II, Automata, Analysis of Complex Systems, Probabilities, Industry Track Invited Papers, Industry Track, Divide et Impera: Efficient Synthesis of Cyber-Physical System.




FM 2015: Formal Methods


Book Description

This book constitutes the refereed proceedings of the 20th International Symposium on Formal Methods, FM 2015, held in Oslo, Norway, in June 2015. The 30 full papers and 2 short papers presented were carefully reviewed and selected from 124 submissions. The papers cover a wide spectrum of all the different aspects of the use of and the research on formal methods for software development.




Mathematical Foundations of Computer Science 2013


Book Description

This book constitutes the thoroughly refereed conference proceedings of the 38th International Symposium on Mathematical Foundations of Computer Science, MFCS 2013, held in Klosterneuburg, Austria, in August 2013. The 67 revised full papers presented together with six invited talks were carefully selected from 191 submissions. Topics covered include algorithmic game theory, algorithmic learning theory, algorithms and data structures, automata, formal languages, bioinformatics, complexity, computational geometry, computer-assisted reasoning, concurrency theory, databases and knowledge-based systems, foundations of computing, logic in computer science, models of computation, semantics and verification of programs, and theoretical issues in artificial intelligence.




Tools and Algorithms for the Construction and Analysis of Systems


Book Description

This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems.