The United States Government Internet Directory, 2015


Book Description

The United States Government Internet Directory serves as a guide to the changing landscape of government information online. The Directory is an indispensable guidebook for anyone who is looking for official U.S. government resources on the Web.




Automotive Technology and Fuel Economy Standards


Book Description







Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles


Book Description

The light-duty vehicle fleet is expected to undergo substantial technological changes over the next several decades. New powertrain designs, alternative fuels, advanced materials and significant changes to the vehicle body are being driven by increasingly stringent fuel economy and greenhouse gas emission standards. By the end of the next decade, cars and light-duty trucks will be more fuel efficient, weigh less, emit less air pollutants, have more safety features, and will be more expensive to purchase relative to current vehicles. Though the gasoline-powered spark ignition engine will continue to be the dominant powertrain configuration even through 2030, such vehicles will be equipped with advanced technologies, materials, electronics and controls, and aerodynamics. And by 2030, the deployment of alternative methods to propel and fuel vehicles and alternative modes of transportation, including autonomous vehicles, will be well underway. What are these new technologies - how will they work, and will some technologies be more effective than others? Written to inform The United States Department of Transportation's National Highway Traffic Safety Administration (NHTSA) and Environmental Protection Agency (EPA) Corporate Average Fuel Economy (CAFE) and greenhouse gas (GHG) emission standards, this new report from the National Research Council is a technical evaluation of costs, benefits, and implementation issues of fuel reduction technologies for next-generation light-duty vehicles. Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles estimates the cost, potential efficiency improvements, and barriers to commercial deployment of technologies that might be employed from 2020 to 2030. This report describes these promising technologies and makes recommendations for their inclusion on the list of technologies applicable for the 2017-2025 CAFE standards.




Chemical and Biomedical Engineering Calculations Using Python


Book Description

Presents standard numerical approaches for solving common mathematical problems in engineering using Python. Covers the most common numerical calculations used by engineering students Covers Numerical Differentiation and Integration, Initial Value Problems, Boundary Value Problems, and Partial Differential Equations Focuses on open ended, real world problems that require students to write a short report/memo as part of the solution process Includes an electronic download of the Python codes presented in the book













Lightweight and Sustainable Materials for Automotive Applications


Book Description

Automotive manufacturers are required to decrease CO2 emissions and increase fuel economy while assuring driver comfort and safety. In recent years, there has been rapid development in the application of lightweight and sustainable materials in the automotive industry to help meet these criteria. This book provides critical reviews and the latest research results of various lightweight and sustainable materials in automotive applications. It discusses current applications and future trends of lightweight materials in the automotive area. While there are a few books published mainly focusing on automotive applications of metallic lightweight materials, to date there is no available book focusing on a broad spectrum of lightweight materials, including metal, plastic, composites, bio-fiber, bio-polymer, carbon fiber, glass fiber, nanomaterials, rubber materials, and foaming materials, as this work does. The book also includes case studies of commercial lightweight automotive parts from sustainable lightweight materials, providing an invaluable resource to those involved in this in-demand research and commercialization area.