Modeling and Computation in Vibration Problems


Book Description

Vibration problems are commonly encountered in a wide range of scientific and technological domains. Covering the most recent computational and theoretical trends in the field, these books provide a state-of-the-art treatment of different mathematical theories of vibration, numerical simulations, machine intelligence techniques and physical experiments with computational investigations, as well as their various engineering, biological and science applications.




Inverse Problems in Vibration


Book Description

In the first, 1986, edition of this book, inverse problems in vibration were interpreted strictly: problems concerning the reconstruction of a unique, undamped vibrating system, of a specified type, from specified vibratory behaviour, particularly specified natural frequencies and/or natural mode shapes. In this new edition the scope of the book has been widened to include topics such as isospectral systems- families of systems which all exhibit some specified behaviour; applications of the concept of Toda flow; new, non-classical approaches to inverse Sturm-Liouville problems; qualitative properties of the modes of some finite element models; damage identification. With its emphasis on analysis, on qualitative results, rather than on computation, the book will appeal to researchers in vibration theory, matrix analysis, differential and integral equations, matrix analysis, non-destructive testing, modal analysis, vibration isolation, etc. "This book is a necessary addition to the library of engineers and mathematicians working in vibration theory." Mathematical Reviews




Harmonic Balance for Nonlinear Vibration Problems


Book Description

This monograph presents an introduction to Harmonic Balance for nonlinear vibration problems, covering the theoretical basis, its application to mechanical systems, and its computational implementation. Harmonic Balance is an approximation method for the computation of periodic solutions of nonlinear ordinary and differential-algebraic equations. It outperforms numerical forward integration in terms of computational efficiency often by several orders of magnitude. The method is widely used in the analysis of nonlinear systems, including structures, fluids and electric circuits. The book includes solved exercises which illustrate the advantages of Harmonic Balance over alternative methods as well as its limitations. The target audience primarily comprises graduate and post-graduate students, but the book may also be beneficial for research experts and practitioners in industry.




Mathematical Models


Book Description

The author uses mathematical techniques to give an in-depth look at models for mechanical vibrations, population dynamics, and traffic flow.




Recent Trends in Wave Mechanics and Vibrations


Book Description

This book consists of select proceedings of the National Conference on Wave Mechanics and Vibrations (WMVC 2018). It covers recent developments and cutting-edge methods in wave mechanics and vibrations applied to a wide range of engineering problems. The book presents analytical and computational studies in structural mechanics, seismology and earthquake engineering, mechanical engineering, aeronautics, robotics and nuclear engineering among others. This book can be useful for students, researchers, and professionals interested in the wide-ranging applications of wave mechanics and vibrations.







Vibration Problems ICOVP 2011


Book Description

This volume presents the Proceedings of the 10th International Conference on Vibration Problems, 2011, Prague, Czech Republic. ICOVP 2011 brings together again scientists from different backgrounds who are actively working on vibration-related problems of engineering both in theoretical and applied fields, thus facilitating a lively exchange of ideas, methods and results between the many different research areas. The aim is that reciprocal intellectual fertilization will take place and ensure a broad interdisciplinary research field. The topics, indeed, cover a wide variety of vibration-related subjects, from wave problems in solid mechanics to vibration problems related to biomechanics. The first ICOVP conference was held in 1990 at A.C. College, Jalpaiguri, India, under the co-chairmanship of Professor M.M. Banerjee and Professor P. Biswas. Since then it has been held every 2 years at various venues across the World.




Introduction to Computation and Modeling for Differential Equations


Book Description

An introduction to scientific computing for differential equations Introduction to Computation and Modeling for Differential Equations provides a unified and integrated view of numerical analysis, mathematical modeling in applications, and programming to solve differential equations, which is essential in problem-solving across many disciplines, such as engineering, physics, and economics. This book successfully introduces readers to the subject through a unique "Five-M" approach: Modeling, Mathematics, Methods, MATLAB, and Multiphysics. This approach facilitates a thorough understanding of how models are created and preprocessed mathematically with scaling, classification, and approximation, and it also illustrates how a problem is solved numerically using the appropriate mathematical methods. The book's approach of solving a problem with mathematical, numerical, and programming tools is unique and covers a wide array of topics, from mathematical modeling to implementing a working computer program. The author utilizes the principles and applications of scientific computing to solve problems involving: Ordinary differential equations Numerical methods for Initial Value Problems (IVPs) Numerical methods for Boundary Value Problems (BVPs) Partial Differential Equations (PDEs) Numerical methods for parabolic, elliptic, and hyperbolic PDEs Mathematical modeling with differential equations Numerical solution Finite difference and finite element methods Real-world examples from scientific and engineering applications including mechanics, fluid dynamics, solid mechanics, chemical engineering, electromagnetic field theory, and control theory are solved through the use of MATLAB and the interactive scientific computing program Comsol Multiphysics. Numerous illustrations aid in the visualization of the solutions, and a related Web site features demonstrations, solutions to problems, MATLAB programs, and additional data. Introduction to Computation and Modeling for Differential Equations is an ideal text for courses in differential equations, ordinary differential equations, partial differential equations, and numerical methods at the upper-undergraduate and graduate levels. The book also serves as a valuable reference for researchers and practitioners in the fields of mathematics, engineering, and computer science who would like to refresh and revive their knowledge of the mathematical and numerical aspects as well as the applications of scientific computation.




Advances In Computation, Modeling And Control Of Transitional And Turbulent Flows


Book Description

The role of high performance computing in current research on transitional and turbulent flows is undoubtedly very important. This review volume provides a good platform for leading experts and researchers in various fields of fluid mechanics dealing with transitional and turbulent flows to synergistically exchange ideas and present the state of the art in the fields.Contributed by eminent researchers, the book chapters feature keynote lectures, panel discussions and the best invited contributed papers.




Computation and Modeling for Fractional Order Systems


Book Description

Computation and Modeling for Fractional Order Systems provides readers with problem-solving techniques for obtaining exact and/or approximate solutions of governing equations arising in fractional dynamical systems presented using various analytical, semi-analytical, and numerical methods. In this regard, this book brings together contemporary and computationally efficient methods for investigating real-world fractional order systems in one volume. Fractional calculus has gained increasing popularity and relevance over the last few decades, due to its well-established applications in various fields of science and engineering. It deals with the differential and integral operators with non-integral powers. Fractional differential equations are the pillar of various systems occurring in a wide range of science and engineering disciplines, namely physics, chemical engineering, mathematical biology, financial mathematics, structural mechanics, control theory, circuit analysis, and biomechanics, among others. The fractional derivative has also been used in various other physical problems, such as frequency-dependent damping behavior of structures, motion of a plate in a Newtonian fluid, PID controller for the control of dynamical systems, and many others. The mathematical models in electromagnetics, rheology, viscoelasticity, electrochemistry, control theory, Brownian motion, signal and image processing, fluid dynamics, financial mathematics, and material science are well defined by fractional-order differential equations. Generally, these physical models are demonstrated either by ordinary or partial differential equations. However, modeling these problems by fractional differential equations, on the other hand, can make the physics of the systems more feasible and practical in some cases. In order to know the behavior of these systems, we need to study the solutions of the governing fractional models. The exact solution of fractional differential equations may not always be possible using known classical methods. Generally, the physical models occurring in nature comprise complex phenomena, and it is sometimes challenging to obtain the solution (both analytical and numerical) of nonlinear differential equations of fractional order. Various aspects of mathematical modeling that may include deterministic or uncertain (viz. fuzzy or interval or stochastic) scenarios along with fractional order (singular/non-singular kernels) are important to understand the dynamical systems. Computation and Modeling for Fractional Order Systems covers various types of fractional order models in deterministic and non-deterministic scenarios. Various analytical/semi-analytical/numerical methods are applied for solving real-life fractional order problems. The comprehensive descriptions of different recently developed fractional singular, non-singular, fractal-fractional, and discrete fractional operators, along with computationally efficient methods, are included for the reader to understand how these may be applied to real-world systems, and a wide variety of dynamical systems such as deterministic, stochastic, continuous, and discrete are addressed by the authors of the book.