Process Control


Book Description

Master process control hands on, through practical examples and MATLAB(R) simulations This is the first complete introduction to process control that fully integrates software tools--enabling professionals and students to master critical techniques hands on, through computer simulations based on the popular MATLAB environment. Process Control: Modeling, Design, and Simulation teaches the field's most important techniques, behaviors, and control problems through practical examples, supplemented by extensive exercises--with detailed derivations, relevant software files, and additional techniques available on a companion Web site. Coverage includes: Fundamentals of process control and instrumentation, including objectives, variables, and block diagrams Methodologies for developing dynamic models of chemical processes Dynamic behavior of linear systems: state space models, transfer function-based models, and more Feedback control; proportional, integral, and derivative (PID) controllers; and closed-loop stability analysis Frequency response analysis techniques for evaluating the robustness of control systems Improving control loop performance: internal model control (IMC), automatic tuning, gain scheduling, and enhancements to improve disturbance rejection Split-range, selective, and override strategies for switching among inputs or outputs Control loop interactions and multivariable controllers An introduction to model predictive control (MPC) Bequette walks step by step through the development of control instrumentation diagrams for an entire chemical process, reviewing common control strategies for individual unit operations, then discussing strategies for integrated systems. The book also includes 16 learning modules demonstrating how to use MATLAB and SIMULINK to solve several key control problems, ranging from robustness analyses to biochemical reactors, biomedical problems to multivariable control.




System Design, Modeling, and Simulation


Book Description

This book is a definitive introduction to models of computation for the design of complex, heterogeneous systems. It has a particular focus on cyber-physical systems, which integrate computing, networking, and physical dynamics. The book captures more than twenty years of experience in the Ptolemy Project at UC Berkeley, which pioneered many design, modeling, and simulation techniques that are now in widespread use. All of the methods covered in the book are realized in the open source Ptolemy II modeling framework and are available for experimentation through links provided in the book. The book is suitable for engineers, scientists, researchers, and managers who wish to understand the rich possibilities offered by modern modeling techniques. The goal of the book is to equip the reader with a breadth of experience that will help in understanding the role that such techniques can play in design.




Guide to Modeling and Simulation of Systems of Systems


Book Description

This user’s reference is a companion to the separate book also titled “Guide to Modelling and Simulation of Systems of Systems.” The principal book explicates integrated development environments to support virtual building and testing of systems of systems, covering in some depth the MS4 Modelling EnvironmentTM. This user’s reference provides a quick reference and exposition of the various concepts and functional features covered in that book. The topics in the user’s reference are grouped in alignment with the workflow displayed on the MS4 Modeling EnvironmentTM launch page, under the headings Atomic Models, System Entity Structure, Pruning SES, and Miscellaneous. For each feature, the reference discusses why we use it, when we should use it, and how to use it. Further comments and links to related features are also included.




Modeling and Simulation for RF System Design


Book Description

Modern telecommunication systems are highly complex from an algorithmic point of view. The complexity continues to increase due to advanced modulation schemes, multiple protocols and standards, as well as additional functionality such as personal organizers or navigation aids. To have short and reliable design cycles, efficient verification methods and tools are necessary. Modeling and simulation need to accompany the design steps from the specification to the overall system verification in order to bridge the gaps between system specification, system simulation, and circuit level simulation. Very high carrier frequencies together with long observation periods result in extremely large computation times and requires, therefore, specialized modeling methods and simulation tools on all design levels. The focus of Modeling and Simulation for RF System Design lies on RF specific modeling and simulation methods and the consideration of system and circuit level descriptions. It contains application-oriented training material for RF designers which combines the presentation of a mixed-signal design flow, an introduction into the powerful standardized hardware description languages VHDL-AMS and Verilog-A, and the application of commercially available simulators. Modeling and Simulation for RF System Design is addressed to graduate students and industrial professionals who are engaged in communication system design and want to gain insight into the system structure by own simulation experiences. The authors are experts in design, modeling and simulation of communication systems engaged at the Nokia Research Center (Bochum, Germany) and the Fraunhofer Institute for Integrated Circuits, Branch Lab Design Automation (Dresden, Germany).




System Dynamics


Book Description

This book allows the reader to acquire step-by-step in a time-efficient and uncomplicated the knowledge in the formation and construction of dynamic models using Vensim. Many times, the models are performed with minimal current data and very few historical data, the simulation models that the student will design in this course accommodate these analyses, with the construction of realistic hypotheses and elaborate behavior models. That's done with the help of software Vensim that helps the construction of the models as well as performing model simulations. At the end of the book, the reader is able to: - Describe the components of a complex system. - Diagnose the natural evolution of the system under analysis. - Create a model of the system and present it using the simulation software. - Carry out simulations with the model, in order to predict the behavior of the system. Content Environmental Area 1. Population Growth 2. Ecology of a Natural Reserve 3. Effects of the Intensive Farming 4. The Fishery of Shrimp 5. Rabbits and Foxes 6. A Study of Hogs 7. Ingestion of Toxins 8. The Barays of Angkor 9. The Golden Number Management Area 10. Production and Inventory 11. CO2 Emissions 12. How to Work More and Better 13. Faults 14. Project Dynamics 15. Innovatory Companies 16. Quality Control 17. The impact of a Business Plan Social Area 18. Filling a Glass 19. A Catastrophe Study 20. The Young Ambitious Worker 21. Development of an Epidemic 22. The Dynamics of Two Clocks Mechanical Area 23. The Tank 24. Study of the Oscillatory Movements 25. Design of a Chemical Reactor 26. The Butterfly Effect 27. The Mysterious Lamp Advanced Exercises (Vensim PLE PLUS) 28. Import data from an Excel file 29. Building Games and Learning Labs 30. Interactive models 31. Input Output Controls 32. Sensitivity Analysis Annex I. Guide to creating a model II. Functions, Tables and Delays III. Frequently Asked Questions FAQs IV. Download the models of this book The author Juan Martín García is teacher and a worldwide recognized expert in System Dynamics, with more than twenty years of experience in this field. Ph.D. Industrial Engineer (Spain) and Postgraduated Diploma in Business Dynamics at Massachusetts Institute of Technology MIT (USA). He teaches Vensim online courses in http://vensim.com/vensim-online-courses/ based on System Dynamics.




Modeling and Simulation of Discrete Event Systems


Book Description

Computer modeling and simulation (M&S) allows engineers to study and analyze complex systems. Discrete-event system (DES)-M&S is used in modern management, industrial engineering, computer science, and the military. As computer speeds and memory capacity increase, so DES-M&S tools become more powerful and more widely used in solving real-life problems. Based on over 20 years of evolution within a classroom environment, as well as on decades-long experience in developing simulation-based solutions for high-tech industries, Modeling and Simulation of Discrete-Event Systems is the only book on DES-M&S in which all the major DES modeling formalisms – activity-based, process-oriented, state-based, and event-based – are covered in a unified manner: A well-defined procedure for building a formal model in the form of event graph, ACD, or state graph Diverse types of modeling templates and examples that can be used as building blocks for a complex, real-life model A systematic, easy-to-follow procedure combined with sample C# codes for developing simulators in various modeling formalisms Simple tutorials as well as sample model files for using popular off-the-shelf simulators such as SIGMA®, ACE®, and Arena® Up-to-date research results as well as research issues and directions in DES-M&S Modeling and Simulation of Discrete-Event Systems is an ideal textbook for undergraduate and graduate students of simulation/industrial engineering and computer science, as well as for simulation practitioners and researchers.




Modeling, Design and Simulation of Systems


Book Description

This two-volume set CCIS 751 and CCIS 752 constitutes the proceedings of the 17th Asia Simulation Conference, AsiaSim 2017, held in Malacca, Malaysia, in August/September 2017. The 124 revised full papers presented in this two-volume set were carefully reviewed and selected from 267 submissions. The papers contained in these proceedings address challenging issues in modeling and simulation in various fields such as embedded systems; symbiotic simulation; agent-based simulation; parallel and distributed simulation; high performance computing; biomedical engineering; big data; energy, society and economics; medical processes; simulation language and software; visualization; virtual reality; modeling and Simulation for IoT; machine learning; as well as the fundamentals and applications of computing.




Modeling and Simulation of Systems Using MATLAB and Simulink


Book Description

Not only do modeling and simulation help provide a better understanding of how real-world systems function, they also enable us to predict system behavior before a system is actually built and analyze systems accurately under varying operating conditions. Modeling and Simulation of Systems Using MATLAB® and Simulink® provides comprehensive, state-of-the-art coverage of all the important aspects of modeling and simulating both physical and conceptual systems. Various real-life examples show how simulation plays a key role in understanding real-world systems. The author also explains how to effectively use MATLAB and Simulink software to successfully apply the modeling and simulation techniques presented. After introducing the underlying philosophy of systems, the book offers step-by-step procedures for modeling different types of systems using modeling techniques, such as the graph-theoretic approach, interpretive structural modeling, and system dynamics modeling. It then explores how simulation evolved from pre-computer days into the current science of today. The text also presents modern soft computing techniques, including artificial neural networks, fuzzy systems, and genetic algorithms, for modeling and simulating complex and nonlinear systems. The final chapter addresses discrete systems modeling. Preparing both undergraduate and graduate students for advanced modeling and simulation courses, this text helps them carry out effective simulation studies. In addition, graduate students should be able to comprehend and conduct simulation research after completing this book.




Modeling, Design, and Simulation of Systems with Uncertainties


Book Description

To describe the true behavior of most real-world systems with sufficient accuracy, engineers have to overcome difficulties arising from their lack of knowledge about certain parts of a process or from the impossibility of characterizing it with absolute certainty. Depending on the application at hand, uncertainties in modeling and measurements can be represented in different ways. For example, bounded uncertainties can be described by intervals, affine forms or general polynomial enclosures such as Taylor models, whereas stochastic uncertainties can be characterized in the form of a distribution described, for example, by the mean value, the standard deviation and higher-order moments. The goal of this Special Volume on Modeling, Design, and Simulation of Systems with Uncertainties is to cover modern methods for dealing with the challenges presented by imprecise or unavailable information. All contributions tackle the topic from the point of view of control, state and parameter estimation, optimization and simulation. Thematically, this volume can be divided into two parts. In the first we present works highlighting the theoretic background and current research on algorithmic approaches in the field of uncertainty handling, together with their reliable software implementation. The second part is concerned with real-life application scenarios from various areas including but not limited to mechatronics, robotics, and biomedical engineering.




Simulation in Computer Network Design and Modeling: Use and Analysis


Book Description

"This book reviews methodologies in computer network simulation and modeling, illustrates the benefits of simulation in computer networks design, modeling, and analysis, and identifies the main issues that face efficient and effective computer network simulation"--Provided by publisher.