Hydrology in a Changing World


Book Description

This book offers a comprehensive overview of the challenges in hydrological modeling. Hydrology, on both a local and global scale, has undergone dramatic changes, largely due to variations in climate, population growth and the associated land-use and land-cover changes. Written by experts in the field, the book provides decision-makers with a better understanding of the science, impacts, and consequences of these climate and land-use changes on hydrology. Further, offering insights into how the changing behavior of hydrological processes, related uncertainties and their evolution affect the modeling process, it is of interest for all researchers and practitioners using hydrological modeling.




Modeling Hydrologic Change


Book Description

Modeling hydrologic changes and predicting their impact on watersheds is a dominant concern for hydrologists and other water resource professionals, civil and environmental engineers, and urban and regional planners. As such changes continue, it becomes more essential to have the most up-to-date tools with which to perform the proper analyses and modeling of the complex ecology, morphology, and physical processes that occur within watersheds. An application-oriented text, Modeling Hydrologic Change: Statistical Methods provides a step-by-step presentation of modeling procedures to help you properly analyze and model real-world data. The text addresses modeling systems where change has affected data that will be used to calibrate and test models of the system. The use of actual hydrologic data will help you learn how to handle the vagaries of real-world hydrologic-change data. All four elements of the modeling process are discussed: conceptualization, formulation, calibration, and verification. Although the book is oriented towards the statistical aspects of modeling, a strong background in statistics is not required. The statistical and modeling methods discussed here will be of value to all disciplines involved in modeling change. With approximately 100 illustrations, Modeling Hydrologic Change will equip you with an understanding with which to perform the proper analyses and modeling of the complex processes that occur across various disciplines.




Modeling Hydrologic Change


Book Description

Modeling hydrologic changes and predicting their impact on watersheds is a dominant concern for hydrologists and other water resource professionals, civil and environmental engineers, and urban and regional planners. As such changes continue, it becomes more essential to have the most up-to-date tools with which to perform the proper analyses and m




Handbook of Engineering Hydrology


Book Description

While most books only examine the classical aspects of hydrology, the three-volume set covers multiple aspects of hydrology, and includes contributions from experts from more than 30 countries. It examines new approaches, addresses growing concerns about hydrological and ecological connectivity, and considers the worldwide impact of climate change. It also provides updated material on hydrological science and engineering, discussing recent developments as well as classic approaches. Published in three books, Fundamentals and Applications; Modeling, Climate Change, and Variability; and Environmental Hydrology and Water Management, the entire set consists of 87 chapters, and contains 29 chapters in each book. The chapters in this book contain information on: Long-term generation of scheduling of hydro plants, check dam selection procedures in rainwater harvesting, and stochastic reservoir analysis Ecohydrology for engineering harmony in the changing world, concepts, and plant water use Conjunctive use of groundwater and surface water Hydrologic and hydraulic design in green infrastructure Data processing in hydrology, optimum hydrometric site selection and quality control, and homogenization of climatological series Cold region hydrology, evapotranspiration, and water consumption Modern flood prediction and warning systems, and satellite-based systems for flood monitoring and warning Catchment water yield estimation, hydrograph analysis and base flow separation, and low flow hydrology Sustainability in urban water systems and urban hydrology Students, practitioners, policy makers, consultants and researchers can benefit from the use of this text.




Hydrologic Modeling


Book Description

This book contains seven parts. The first part deals with some aspects of rainfall analysis, including rainfall probability distribution, local rainfall interception, and analysis for reservoir release. Part 2 is on evapotranspiration and discusses development of neural network models, errors, and sensitivity. Part 3 focuses on various aspects of urban runoff, including hydrologic impacts, storm water management, and drainage systems. Part 4 deals with soil erosion and sediment, covering mineralogical composition, geostatistical analysis, land use impacts, and land use mapping. Part 5 treats remote sensing and geographic information system (GIS) applications to different hydrologic problems. Watershed runoff and floods are discussed in Part 6, encompassing hydraulic, experimental, and theoretical aspects. Water modeling constitutes the concluding Part 7. Soil and Water Assessment Tool (SWAT), Xinanjiang, and Soil Conservation Service-Curve Number (SCS-CN) models are discussed. The book is of interest to researchers and practitioners in the field of water resources, hydrology, environmental resources, agricultural engineering, watershed management, earth sciences, as well as those engaged in natural resources planning and management. Graduate students and those wishing to conduct further research in water and environment and their development and management find the book to be of value.




Floods in a Changing Climate


Book Description

Measurement, analysis and modeling of extreme precipitation events linked to floods is vital in understanding changing climate impacts and variability. This book provides methods for assessment of the trends in these events and their impacts. It also provides a basis to develop procedures and guidelines for climate-adaptive hydrologic engineering. Academic researchers in the fields of hydrology, climate change, meteorology, environmental policy and risk assessment, and professionals and policy-makers working in hazard mitigation, water resources engineering and climate adaptation will find this an invaluable resource. This volume is the first in a collection of four books on flood disaster management theory and practice within the context of anthropogenic climate change. The others are: Floods in a Changing Climate: Hydrological Modeling by P. P. Mujumdar and D. Nagesh Kumar, Floods in a Changing Climate: Inundation Modeling by Giuliano Di Baldassarre and Floods in a Changing Climate: Risk Management by Slodoban Simonović.




Hillslope Hydrology


Book Description

A complete guide to the behavior of water on graded land Hillslope Hydrology provides a comprehensive introduction to the behavior of water on a slope. Describing the fates of precipitation, the mechanics of runoff, and the calculations involved in assessment, this book clarifies the complex interplay of soils, sediment, subsurface flow, overland flow, saturation, erosion, and more. An ideal resource for graduate students of Earth science, environmental science, civil engineering, architecture, landscape management, and related fields, this informative guide provides the essential information needed to work effectively with graded land or predict outcomes of precipitation.




Climate Change and Terrestrial Ecosystem Modeling


Book Description

Provides an essential introduction to modeling terrestrial ecosystems in Earth system models for graduate students and researchers.




Extreme Hydrology and Climate Variability


Book Description

Extreme Hydrology and Climate Variability: Monitoring, Modelling, Adaptation and Mitigation is a compilation of contributions by experts from around the world who discuss extreme hydrology topics, from monitoring, to modeling and management. With extreme climatic and hydrologic events becoming so frequent, this book is a critical source, adding knowledge to the science of extreme hydrology. Topics covered include hydrometeorology monitoring, climate variability and trends, hydrological variability and trends, landscape dynamics, droughts, flood processes, and extreme events management, adaptation and mitigation. Each of the book's chapters provide background and theoretical foundations followed by approaches used and results of the applied studies. This book will be highly used by water resource managers and extreme event researchers who are interested in understanding the processes and teleconnectivity of large-scale climate dynamics and extreme events, predictability, simulation and intervention measures. - Presents datasets used and methods followed to support the findings included, allowing readers to follow these steps in their own research - Provides variable methodological approaches, thus giving the reader multiple hydrological modeling information to use in their work - Includes a variety of case studies, thus making the context of the book relatable to everyday working situations for those studying extreme hydrology - Discusses extreme event management, including adaption and mitigation




Distributed Hydrologic Modeling Using GIS


Book Description

1. 5 REFERENCES 127 7 DIGITAL TERRAIN 129 1. 1 INTRODUCTION 129 1. 2 DRAINAGE NETWORK 130 1. 3 DEFINITION OF CHANNEL NETWORKS 135 1. 4 RESOLUTION DEPENDENT EFFECTS 138 1. 5 CONSTRAINING DRAINAGE DIRECTION 141 1. 6 SUMMARY 145 1. 7 REFERENCES 146 8 PRECIPITATION MEASUREMENT 149 1. 1 INTRODUCTION 149 1. 2 RAIN GAUGE ESTIMATION OF RAINFALL 151 ADAR STIMATION OF RECIPITATION 1. 3 R E P 155 1. 4 WSR-88D RADAR CHARACTERISTICS 167 1. 5 INPUT FOR HYDROLOGIC MODELING 172 1. 6 SUMMARY 174 1. 7 REFERENCES 175 9 FINITE ELEMENT MODELING 177 1. 1 INTRODUCTION 177 1. 2 MATHEMATICAL FORMULATION 182 1. 3 SUMMARY 194 1. 4 REFERENCES 195 10 DISTRIBUTED MODEL CALIBRATION 197 1. 1 INTRODUCTION 197 1. 2 CALIBRATION APPROACH 199 1. 3 DISTRIBUTED MODEL CALIBRATION 201 1. 4 AUTOMATIC CALIBRATION 208 1. 5 SUMMARY 214 1. 6 REFERENCES 214 11 DISTRIBUTED HYDROLOGIC MODELING 217 1. 1 INTRODUCTION 218 1. 2 CASE STUDIES 218 1. 3 SUMMARY 236 1. 4 REFERENCES 237 12 HYDROLOGIC ANALYSIS AND PREDICTION 239 1. 1 INTRODUCTION 239 x Distributed Hydrologic Modeling Using GIS 1. 2 VFLOTM EDITIONS 241 1. 3 VFLOTM FEATURES AND MODULES 242 1. 4 MODEL FEATURE SUMMARY 245 1. 5 VFLOTM REAL-TIME 256 1. 6 DATA REQUIREMENTS 258 1. 7 RELATIONSHIP TO OTHER MODELS 259 1. 8 SUMMARY 260 1.