Modeling, Mesh Generation, and Adaptive Numerical Methods for Partial Differential Equations


Book Description

With considerations such as complex-dimensional geometries and nonlinearity, the computational solution of partial differential systems has become so involved that it is important to automate decisions that have been normally left to the individual. This book covers such decisions: 1) mesh generation with links to the software generating the domain geometry, 2) solution accuracy and reliability with mesh selection linked to solution generation. This book is suited for mathematicians, computer scientists and engineers and is intended to encourage interdisciplinary interaction between the diverse groups.







Adaptive Moving Mesh Methods


Book Description

This book is about adaptive mesh generation and moving mesh methods for the numerical solution of time-dependent partial differential equations. It presents a general framework and theory for adaptive mesh generation and gives a comprehensive treatment of moving mesh methods and their basic components, along with their application for a number of nontrivial physical problems. Many explicit examples with computed figures illustrate the various methods and the effects of parameter choices for those methods. Graduate students, researchers and practitioners working in this area will benefit from this book.




Proceedings of the 17th International Meshing Roundtable


Book Description

This volume contains the articles presented at the 17th International Meshing Roundtable (IMR) organized, in part, by Sandia National Laboratories and held October 12-15, 2008. The volume presents recent results of mesh generation and adaptation which has applications to finite element simulation. It introduces theoretical and novel ideas with practical potential.




Domain Decomposition Methods 10


Book Description

This volume contains the proceedings of the Tenth International Conference on Domain Decomposition Methods, which focused on the latest developments in realistic applications in structural mechanics, structural dynamics, computational fluid dynamics, and heat transfer. The proceedings of these conferences have become standard references in the field and contain seminal papers as well as the latest theoretical results and reports on practical applications.




Combinatorial Scientific Computing


Book Description

Combinatorial Scientific Computing explores the latest research on creating algorithms and software tools to solve key combinatorial problems on large-scale high-performance computing architectures. It includes contributions from international researchers who are pioneers in designing software and applications for high-performance computing systems. The book offers a state-of-the-art overview of the latest research, tool development, and applications. It focuses on load balancing and parallelization on high-performance computers, large-scale optimization, algorithmic differentiation of numerical simulation code, sparse matrix software tools, and combinatorial challenges and applications in large-scale social networks. The authors unify these seemingly disparate areas through a common set of abstractions and algorithms based on combinatorics, graphs, and hypergraphs. Combinatorial algorithms have long played a crucial enabling role in scientific and engineering computations and their importance continues to grow with the demands of new applications and advanced architectures. By addressing current challenges in the field, this volume sets the stage for the accelerated development and deployment of fundamental enabling technologies in high-performance scientific computing.




Biomedical Engineering Fundamentals


Book Description

Over the last century,medicine has come out of theblack bag and emerged as one of the most dynamic and advanced fields of development in science and technology. Today, biomedical engineering plays a critical role in patient diagnosis, care, and rehabilitation. As such, the field encompasses a wide range of disciplines, from biology and physiolog




Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems


Book Description

The Institute for Mathematics and its Applications (IMA) devoted its 1997-1998 program to Emerging Applications of Dynamical Systems. Dynamical systems theory and related numerical algorithms provide powerful tools for studying the solution behavior of differential equations and mappings. In the past 25 years computational methods have been developed for calculating fixed points, limit cycles, and bifurcation points. A remaining challenge is to develop robust methods for calculating more complicated objects, such as higher- codimension bifurcations of fixed points, periodic orbits, and connecting orbits, as well as the calcuation of invariant manifolds. Another challenge is to extend the applicability of algorithms to the very large systems that result from discretizing partial differential equations. Even the calculation of steady states and their linear stability can be prohibitively expensive for large systems (e.g. 10_3- -10_6 equations) if attempted by simple direct methods. Several of the papers in this volume treat computational methods for low and high dimensional systems and, in some cases, their incorporation into software packages. A few papers treat fundamental theoretical problems, including smooth factorization of matrices, self -organized criticality, and unfolding of singular heteroclinic cycles. Other papers treat applications of dynamical systems computations in various scientific fields, such as biology, chemical engineering, fluid mechanics, and mechanical engineering.




Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, Methods, and Theory


Book Description

This IMA Volume in Mathematics and its Applications MATHEMATICAL APPROACHES FOR EMERGING AND REEMERGING INFECTIOUS DISEASES: MODELS, AND THEORY METHODS is based on the proceedings of a successful one week workshop. The pro ceedings of the two-day tutorial which preceded the workshop "Introduction to Epidemiology and Immunology" appears as IMA Volume 125: Math ematical Approaches for Emerging and Reemerging Infectious Diseases: An Introduction. The tutorial and the workshop are integral parts of the September 1998 to June 1999 IMA program on "MATHEMATICS IN BI OLOGY. " I would like to thank Carlos Castillo-Chavez (Director of the Math ematical and Theoretical Biology Institute and a member of the Depart ments of Biometrics, Statistics and Theoretical and Applied Mechanics, Cornell University), Sally M. Blower (Biomathematics, UCLA School of Medicine), Pauline van den Driessche (Mathematics and Statistics, Uni versity of Victoria), and Denise Kirschner (Microbiology and Immunology, University of Michigan Medical School) for their superb roles as organizers of the meetings and editors of the proceedings. Carlos Castillo-Chavez, es pecially, made a major contribution by spearheading the editing process. I am also grateful to Kenneth L. Cooke (Mathematics, Pomona College), for being one of the workshop organizers and to Abdul-Aziz Yakubu (Mathe matics, Howard University) for serving as co-editor of the proceedings. I thank Simon A. Levin (Ecology and Evolutionary Biology, Princeton Uni versity) for providing an introduction.




Modeling of Soft Matter


Book Description

This IMA Volume in Mathematics and its Applications MODELING OF SOFT MATTER contains papers presented at a very successful workshop with the same ti tle. The event, which was held on September 27-October 1, 2004, was an integral part of the 2004-2005 IMA Thematic Year on "Mathematics of Ma terials and Macromolecules: Multiple Scales, Disorder, and Singularities. " We would like to thank Maria-Carme T. Calderer (School of Mathematics, University of Minnesota) and Eugene M. Terentjev (Cavendish Laboratory, University of Cambridge) for their superb role as workshop organizers and editors of the proceedings. We take this opportunity to thank the National Science Foundation for its support of the IMA. Series Editors Douglas N. Arnold, Director of the IMA Arnd Scheel, Deputy Director of the IMA PREFACE The physics of soft matter in particular, focusing on such materials as complex fluids, liquid crystals, elastomers, soft ferroelectrics, foams, gels and particulate systems is an area of intense interest and contemporary study. Soft matter plays a role in a wide variety of important processes and application, as well as in living systems. For example, gel swelling is an essential part of many biological processes such as motility mecha nisms in bacteria and the transport and absorption of drugs. Ferroelectrics, liquid crystals, and elastomers are being used to design ever faster switch ing devices. Experiments of the last decade have provided a great deal of detailed information on structures and properties of soft matter.