Modeling Complex Systems


Book Description

This book illustrates how models of complex systems are built up and provides indispensable mathematical tools for studying their dynamics. This second edition includes more recent research results and many new and improved worked out examples and exercises.




Simulation of Complex Systems


Book Description

This book deals with the most fundamental and essential techniques to simulate complex systems, from the dynamics of molecules to the spreading of diseases, from optimization using ant colonies to the simulation of the Game of Life.




Computational Models of Complex Systems


Book Description

Computational and mathematical models provide us with the opportunities to investigate the complexities of real world problems. They allow us to apply our best analytical methods to define problems in a clearly mathematical manner and exhaustively test our solutions before committing expensive resources. This is made possible by assuming parameter(s) in a bounded environment, allowing for controllable experimentation, not always possible in live scenarios. For example, simulation of computational models allows the testing of theories in a manner that is both fundamentally deductive and experimental in nature. The main ingredients for such research ideas come from multiple disciplines and the importance of interdisciplinary research is well recognized by the scientific community. This book provides a window to the novel endeavours of the research communities to present their works by highlighting the value of computational modelling as a research tool when investigating complex systems. We hope that the readers will have stimulating experiences to pursue research in these directions.




Modeling of Complex Systems


Book Description

Modeling of Complex Systems: An Introduction describes the framework of complex systems. This book discusses the language of system theory, taxonomy of system concepts, steps in model building, and establishing relations using physical laws. The statistical attributes of data, generation of random numbers fundamental problems of recognition, and input-output type models are also elaborated. This text likewise covers the optimization with equality constraints, transfer function models, and competition among species. This publication is written primarily for senior undergraduate students and beginning graduate students who are interested in an interdisciplinary or multidisciplinary approach to large-scale or complex problems of contemporary societal interest.




Smart Modeling and Simulation for Complex Systems


Book Description

This book aims to provide a description of these new Artificial Intelligence technologies and approaches to the modeling and simulation of complex systems, as well as an overview of the latest scientific efforts in this field such as the platforms and/or the software tools for smart modeling and simulating complex systems. These tasks are difficult to accomplish using traditional computational approaches due to the complex relationships of components and distributed features of resources, as well as the dynamic work environments. In order to effectively model the complex systems, intelligent technologies such as multi-agent systems and smart grids are employed to model and simulate the complex systems in the areas of ecosystem, social and economic organization, web-based grid service, transportation systems, power systems and evacuation systems.




Complex Systems and Self-organization Modelling


Book Description

This book, the outcome of a workshop meeting within ESM 2006, explores the use of emergent computing and self-organization modeling within various applications of complex systems.




Modeling Complex Living Systems


Book Description

Develops different mathematical methods and tools to model living systems. This book presents material that can be used in such real-world applications as immunology, transportation engineering, and economics. It is of interest to those involved in modeling complex social systems and living matter in general.




Modeling and Simulation of Complex Systems


Book Description

Robert Siegfried presents a framework for efficient agent-based modeling and simulation of complex systems. He compares different approaches for describing structure and dynamics of agent-based models in detail. Based on this evaluation the author introduces the “General Reference Model for Agent-based Modeling and Simulation” (GRAMS). Furthermore he presents parallel and distributed simulation approaches for execution of agent-based models –from small scale to very large scale. The author shows how agent-based models may be executed by different simulation engines that utilize underlying hardware resources in an optimized fashion.




Research Challenges in Modeling and Simulation for Engineering Complex Systems


Book Description

This illuminating text/reference presents a review of the key aspects of the modeling and simulation (M&S) life cycle, and examines the challenges of M&S in different application areas. The authoritative work offers valuable perspectives on the future of research in M&S, and its role in engineering complex systems. Topics and features: reviews the challenges of M&S for urban infrastructure, healthcare delivery, automated vehicle manufacturing, deep space missions, and acquisitions enterprise; outlines research issues relating to conceptual modeling, covering the development of explicit and unambiguous models, communication and decision-making, and architecture and services; considers key computational challenges in the execution of simulation models, in order to best exploit emerging computing platforms and technologies; examines efforts to understand and manage uncertainty inherent in M&S processes, and how these can be unified under a consistent theoretical and philosophical foundation; discusses the reuse of models and simulations to accelerate the simulation model development process. This thought-provoking volume offers important insights for all researchers involved in modeling and simulation across the full spectrum of disciplines and applications, defining a common research agenda to support the entire M&S research community.




Dynamic Mode Decomposition


Book Description

Data-driven dynamical systems is a burgeoning field?it connects how measurements of nonlinear dynamical systems and/or complex systems can be used with well-established methods in dynamical systems theory. This is a critically important new direction because the governing equations of many problems under consideration by practitioners in various scientific fields are not typically known. Thus, using data alone to help derive, in an optimal sense, the best dynamical system representation of a given application allows for important new insights. The recently developed dynamic mode decomposition (DMD) is an innovative tool for integrating data with dynamical systems theory. The DMD has deep connections with traditional dynamical systems theory and many recent innovations in compressed sensing and machine learning. Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems, the first book to address the DMD algorithm, presents a pedagogical and comprehensive approach to all aspects of DMD currently developed or under development; blends theoretical development, example codes, and applications to showcase the theory and its many innovations and uses; highlights the numerous innovations around the DMD algorithm and demonstrates its efficacy using example problems from engineering and the physical and biological sciences; and provides extensive MATLAB code, data for intuitive examples of key methods, and graphical presentations.