Multiphysical Modelling of Regular and Irregular Combustion in Spark Ignition Engines Using an Integrated / Interactive Flamelet Approach


Book Description

The virtual development of future Spark Ignition (SI) engine combustion processes in three-dimensional Computational Fluid Dynamics (3D-CFD) demands for the integration of detailed chemistry, enabling - additionally to the 3D-CFD modelling of flow and mixture formation - the prediction of fuel-dependent SI engine combustion in all of its complexity. This work presents an approach, which constitutes a coupled solution for flame propagation, auto-ignition, and emission formation modelling incorporating detailed chemistry, while exhibiting low computational costs. For modelling the regular flame propagation, a laminar flamelet approach, the G-equation is used. Auto-ignition phenomena are addressed using an integrated flamelet approach, which bases on the tabulation of fuel-dependent reaction kinetics. By introducing a progress variable for the auto-ignition - the Ignition Progress Variable (IPV) - detailed chemistry is integrated in 3D-CFD. The modelling of emission formation bases on an interactively coupled flamelet approach, the Transient Interactive Flamelet (TIF) model. The functionality of the combined approach to model the variety of SI engine combustion phenomena is proved first in terms of fundamentals and standalone sub-model functionality studies by introducing a simplified test case, which represents an adiabatic pressure vessel without moving meshes. Following the basic functionality studies, the sub-model functionalities are investigated and validated in adequate engine test cases. It is shown, that the approach allows to detect locally occurring auto-ignition phenomena in the combustion chamber, and to model their interaction with regular flame propagation. Moreover, the approach enables the prediction of emission formation on cell level.







Phenomenology and Modelling of Flame-Wall-Interactions in Spark-Ignition-Engines


Book Description

The optimization of combustion in reciprocating engines necessitates an in-depth understanding of the underlying processes as well as accurate and comprehensive physical models. In this respect, the current knowledge on the last stage of combustion in which the flame interacts with the combustion chamber walls is limited. Hence, the objective of this book is to improve the understanding of flame-wall interaction and its modelling. Using a comprehensive analysis of the existing literature on flame-wall interactions as a starting point, the quenching process in a direct-injection spark-ignition engine is investigated via a combination of highly resolved wall heat flux measurements and extensive numerical simulations in order to gain insight into the underlying physical processes. Building on the results, a consistent modelling approach is systematically derived based on the physics of flame quenching and post-flame oxidation. The resulting flame-wall interaction model is based on the G-equation combustion model and incorporates the effects of flame quenching and near-wall turbulence. Finally, the model is applied to simulate combustion in a turbulent channel flow as well as in spark-ignition engines. The results are highlighting the importance of flame-wall interactions for premixed combustion processes in engines and their prediction via simulation.