The Cat Primary Visual Cortex


Book Description

Written by experts on the forefront of investigations of brain function, vision, and perception, the material presented is of an unparalleled scientific quality, and shows that analyses of enormous breadth and sophistication are required to probe the structure and function of brain regions. The articles are highly persuasive in showing what can be achieved by carrying out careful and imaginative experiments. The Cat Primary Visual Cortex should emerge as essential reading for all those interested in cerebral cortical processing of visual signals or researching or working in any field of vision. Comprehensive account of cat primary visual cortex Generous use of illustrations including color Covers research from structure to connections to functions Chapters by leaders in the field Topics presneted on multiple, compatible levels




Computational Neuroscience


Book Description

This volume includes papers presented at the Fifth Annual Computational Neurosci ence meeting (CNS*96) held in Boston, Massachusetts, July 14 - 17, 1996. This collection includes 148 of the 234 papers presented at the meeting. Acceptance for mceting presenta tion was based on the peer review of preliminary papers originally submitted in May of 1996. The papers in this volume represent final versions of this work submitted in January of 1997. As represented by this volume, computational neuroscience continues to expand in quality, size and breadth of focus as increasing numbers of neuroscientists are taking a computational approach to understanding nervous system function. Defining computa tional neuroscience as the exploration of how brains compute, it is clear that there is al most no subject or area of modern neuroscience research that is not appropriate for computational studies. The CNS meetings as well as this volume reflect this scope and di versity.




Cortical Maps: Data and Models


Book Description




Function and Regulation of Cellular Systems


Book Description

Current biological research demands the extensive use of sophisticated mathematical methods and computer-aided analysis of experiments and data. This highly interdisciplinary volume focuses on structural, dynamical and functional aspects of cellular systems and presents corresponding experiments and mathematical models. The book may serve as an introduction for biologists, mathematicians and physicists to key questions in cellular systems which can be studied with mathematical models. Recent model approaches are presented with applications in cellular metabolism, intra- and intercellular signaling, cellular mechanics, network dynamics and pattern formation. In addition, applied issues such as tumor cell growth, dynamics of the immune system and biotechnology are included.




Cerebral Cortex


Book Description

Volume 10 is a direct continuation and extension of Volume 3 in this series, Visual Cortex. Given the impressive proliferation of papers on visual cortex over the intervening eight years, Volume 10 has specifically targeted visual cortex in primates and, even so, it has not been possible to survey all of the major or relevant developments in this area. Some research areas are experiencing rapid change and can best be treated more comprehensively in a subsequent volume; for example, elaboration of color vision; patterns and subdivisions of functional columns. One major goal of this volume has been to provide an overview of the intrinsic structural and functional aspects of area 17 itself. Considerable pro gress has been made since 1985 in unraveling the modular and laminar organi zation of area 17; and this aspect is directly addressed in the chapters by Peters, Lund et al., Wong-Riley, and Casagrande and Kaas. A recurring leitmotif here is the evidence for precise and exquisite order in the interlaminar and tangential connectivity of elements. At the same time, however, as detailed by Lund et al. and Casagrande and Kaas, the very richness of the connectivity implies a multi plicity of processing routes. This reinforces evidence that parallel pathways may not be strictly segregated. Further connectional complexity is contributed by the various sets of inhibitory neurons, as reviewed by Lund et al. and Jones et al.




Handbook of in Vivo Neural Plasticity Techniques


Book Description

Handbook of in Vivo Neural Plasticity Techniques, Volume 28: A Systems Neuroscience Approach to the Neural Basis of Memory and Cognition gives a comprehensive overview of the current methods and approaches that are used to study neural plasticity from a systems neuroscience perspective. In addition, the book offers in-depth methodological advice that provides the necessary foundation for researchers establishing methods and students who need to understand the theoretical and methodological bases of these approaches. This is the ideal resource for anyone new to the study of cognitive and behavioral neuroscience who seeks an introduction to state-of-the-art techniques. Offers a comprehensive overview of state-of-the-art approaches to studying neuroplasticity in vivo Combines discussions of theoretical underpinnings with the methodological and technical aspects necessary to guarantee success Arranged in a uniform format that clearly and concisely lays out descriptions, methods and the pitfalls of various techniques




Cortico-cortical Communication Dynamics


Book Description

Nothing provided




Cerebral Cortex


Book Description

This volume is devoted to mathematical models of the cortex. Computational models of individual neurons and ensembles of neurons are increasingly used in research on cortical organization and function. This is, in part, because of the now ubiquitous presence of powerful and affordable computers. The volume begins with a short history of models of cortical neurons and circuitry that introduces the principal modeling styles. An attempt has been made throughout the volume to make it accessible to readers with minimal mathematical backgrounds.




The New Visual Neurosciences


Book Description

A comprehensive review of contemporary research in the vision sciences, reflecting the rapid advances of recent years. Visual science is the model system for neuroscience, its findings relevant to all other areas. This essential reference to contemporary visual neuroscience covers the extraordinary range of the field today, from molecules and cell assemblies to systems and therapies. It provides a state-of-the art companion to the earlier book The Visual Neurosciences (MIT Press, 2003). This volume covers the dramatic advances made in the last decade, offering new topics, new authors, and new chapters. The New Visual Neurosciences assembles groundbreaking research, written by international authorities. Many of the 112 chapters treat seminal topics not included in the earlier book. These new topics include retinal feature detection; cortical connectomics; new approaches to mid-level vision and spatiotemporal perception; the latest understanding of how multimodal integration contributes to visual perception; new theoretical work on the role of neural oscillations in information processing; and new molecular and genetic techniques for understanding visual system development. An entirely new section covers invertebrate vision, reflecting the importance of this research in understanding fundamental principles of visual processing. Another new section treats translational visual neuroscience, covering recent progress in novel treatment modalities for optic nerve disorders, macular degeneration, and retinal cell replacement. The New Visual Neurosciences is an indispensable reference for students, teachers, researchers, clinicians, and anyone interested in contemporary neuroscience. Associate Editors Marie Burns, Joy Geng, Mark Goldman, James Handa, Andrew Ishida, George R. Mangun, Kimberley McAllister, Bruno Olshausen, Gregg Recanzone, Mandyam Srinivasan, W.Martin Usrey, Michael Webster, David Whitney Sections Retinal Mechanisms and Processes Organization of Visual Pathways Subcortical Processing Processing in Primary Visual Cortex Brightness and Color Pattern, Surface, and Shape Objects and Scenes Time, Motion, and Depth Eye Movements Cortical Mechanisms of Attention, Cognition, and Multimodal Integration Invertebrate Vision Theoretical Perspectives Molecular and Developmental Processes Translational Visual Neuroscience