Modeling of Synthetic Jet Actuators for Active Flow Control


Book Description

Synthetic jet actuators (SJAs) are one of the newly developed actuators that have demonstrated great potentials in active flow applications, particularly in closed-loop flow controls. The SJA contains a piezoelectric membrane in a cavity, which vibrates and generates a periodic jet at the exit of the cavity through an orifice that is mounted flush with the solid wall of the flow field. In order to design the feedback control laws, it is crucial to be able to quantitatively capture the dynamics of SJAs. In this thesis, the dynamics of SJAs with six different orifice sizes are experimentally investigated. A synthesis using system identification for the purpose of constructing mathematical models of these zero mass-flux actuators is offered. The experimental study includes two output parameters, the acoustic sound pressure generated by the SJA and the mechanical membrane vibration of the SJA. State-space models for these outputs (sound pressure and mechanical vibration) are developed as a function of orifice size. These results form a foundation for future intelligent design of SJAs. A preliminary result of flow-velocity measurement is given, and finally the contributions of this entire work and future recommendations are discussed as part of the conclusions.




Lumped Element Modeling of Piezoelectric-driven Synthetic Jet Actuators for Active Flow Control


Book Description

ABSTRACT: This thesis presents a lumped element model of a piezoelectric-driven synthetic-jet actuator. A synthetic jet, also known as a zero net mass-flux device, uses a vibrating diaphragm to generate an oscillatory flow through a small orifice or slot. In lumped element modeling, the individual components of a synthetic jet are modeled as elements of an equivalent electrical circuit using conjugate power variables. The frequency response function of the circuit is derived to obtain an expression for the volume flow rate through the orifice per applied voltage across the piezoceramic. The circuit is analyzed to provide physical insight into the dependence of the device behavior on geometry and material properties. Methods to estimate the model parameters are discussed along with pertinent model assumptions, and experimental verification is presented of the lumped parameter models. In addition, two prototypical synthetic jet actuators are built and tested. Very good agreement is obtained between the predicted and measured frequency response functions.




Flow Control Simulation with Synthetic and Pulsed Jet Actuator


Book Description

Two active flow control methods are investigated numerically to understand the mechanism by which they control aerodynamics in the presence of severe flow separation on an airfoil. In particular, synthetic jets are applied to separated flows generated by additional surface feature (the actuators) near the trailing edge to obtain Coanda-like effects, and an impulse jet is used to control a stalled flow over an airfoil. A moving-grid scheme is developed, verified and validated to support simulations of external flow over moving bodies. Turbulent flow is modeled using detached eddy simulation (DES) turbulence models in the CFD code CDP (34) developed by Lopez (54). Synthetic jet actuation enhances turbulent mixing in flow separation regions, reduces the size of the separation, deflects stream lines closer to the surface and changes pressure distributions on the surface, all of which lead to bi-directional changes in the aerodynamic lift and moment. The external flow responds to actuation within about one convective time, which is significantly faster than for conventional control surfaces. Simulation of pitching airfoils shows that high-frequency synthetic jet affects the flow independently of the baseline frequencies associated with vortex shedding and airfoil dynamics. These unique features of synthetic jets are studied on a dynamically maneuvering airfoil with a closed-loop control system, which represents the response of the airfoil in wind-tunnel experiments and examines the controller for a rapidly maneuvering free-flight airfoil. An impulse jet, which is applied upstream of a nominal flow separation point, generates vortices that convect downstream, interact with the separating shear layer, dismantle the layer and allow following vortices to propagate along the surface in the separation region. These following vortices delay the separation point reattaching the boundary layer, which returns slowly to its initial stall condition, as observed in wind-tunnel experiments. A simple model of the impulse jet actuator used herein is found to be sufficient to represent the global effects of the jet on the stalled flow because it correctly represents the momentum injected into the flow.




Flow Control Techniques and Applications


Book Description

Master the theory, applications and control mechanisms of flow control techniques.




Adaptive Compensation of Nonlinear Actuators for Flight Control Applications


Book Description

This book provides a basic understanding of adaptive control and its applications in Flight control. It discusses the designing of an adaptive feedback control system and analyzes this for flight control of linear and nonlinear aircraft models using synthetic jet actuators. It also discusses control methodologies and the application of control techniques which will help practicing flight control and active flow control researchers. It also covers modelling and control designs which will also benefit researchers from the background of fluid mechanics and health management of actuation systems. The unique feature of this book is characterization of synthetic jet actuator nonlinearities over a wide range of angles of attack, an adaptive compensation scheme for such nonlinearities, and a systematic framework for feedback control of aircraft dynamics with synthetic jet actuators.







Synthetic Jets


Book Description

Compiles Information from a Multitude of SourcesSynthetic jets have been used in numerous applications, and are part of an emergent field. Accumulating information from hundreds of journal articles and conference papers, Synthetic Jets: Fundamentals and Applications brings together in one book the fundamentals and applications of fluidic actuators.




IUTAM Symposium on Flow Control and MEMS


Book Description

The Symposium brought together many of the world’s experts in fluid mechanics, microfabrication and control theory to discover the synergy that can lead to real advances and perhaps find ways in which collaborative projects may proceed. The high profile meeting was attended by keynote speakers who are leaders in their fields. A key driver was the improvement in flow efficiency to reduce drag, and thereby emissions arising from transport. About 65 papers were presented.







Numerical Study on Active Flow Control Using Synthetic Jet Actuators Over a NACA 4421 Airfoil


Book Description

This study is focused on evaluating the effects of using a Zero Net Mass Flux (ZNMF) actuator on a NACA 4421 airfoil for active flow control. First part of the study presents the fundamentals of boundary layer and a study of the available devices which are more used for flow control, focusing on the ZNMF. The steps for creating the mesh to perform numerical simulations of the airfoil are explained, and the results of the CFD simulations are compared with experimental data as a vaseline balidation. In the secord part, the ZNMF is studied in order to set the parameters of the actuator and to simulate its effect on CFD, and moreover the numerical simulations of the airfoil with the ZNMF set up are performed and the results are evaluated. The evaluation will show the most optimum parameters for the actuator, as well as the effects that the ZNMF has on the airfoil's behaviour.