Modeling Random Systems SCD


Book Description

This CD contains an electronic version of the original manuscript of Modeling Random Systems. With the free MathReader, available at www.wolfram.com, readers can print the text or read the text on their computer display, using the hyperlinks to full advantage. With the student version of Mathematica, the reader can, in addition, perform interactive exercises, use the computational power of Mathematica in solving problems, and use the Mathematica code embedded in the text to explore graphics and simulations. This CD is a full substitute for the hardcopy version of Modeling Random Systems or can be used to supplement mathematical introductions to the subject that require additional material on statistics or random processes.




Modeling Random Systems


Book Description

For undergraduate courses in probability, statistics, and random processes in Engineering, especially Electrical Engineering. This text equips students in engineering and other technical areas to understand, analyze, and design systems that have random aspects. Material on probability, statistics, and random processes is presented in a style that appeals to engineering interests and avoids excessive mathematical development. The unifying concept throughout the book is "modeling": probability is defined as a model for data, expectations model averages, the various distributions model real-world situations, random processes model analog and digital information-bearing signals, and white noise models wideband noise from physical processes.




Models of Random Processes


Book Description

Devising and investigating random processes that describe mathematical models of phenomena is a major aspect of probability theory applications. Stochastic methods have penetrated into an unimaginably wide scope of problems encountered by researchers who need stochastic methods to solve problems and further their studies. This handbook supplies the knowledge you need on the modern theory of random processes. Packed with methods, Models of Random Processes: A Handbook for Mathematicians and Engineers presents definitions and properties on such widespread processes as Poisson, Markov, semi-Markov, Gaussian, and branching processes, and on special processes such as cluster, self-exiting, double stochastic Poisson, Gauss-Poisson, and extremal processes occurring in a variety of different practical problems. The handbook is based on an axiomatic definition of probability space, with strict definitions and constructions of random processes. Emphasis is placed on the constructive definition of each class of random processes, so that a process is explicitly defined by a sequence of independent random variables and can easily be implemented into the modelling. Models of Random Processes: A Handbook for Mathematicians and Engineers will be useful to researchers, engineers, postgraduate students and teachers in the fields of mathematics, physics, engineering, operations research, system analysis, econometrics, and many others.




Random Processes for Engineers


Book Description

This engaging introduction to random processes provides students with the critical tools needed to design and evaluate engineering systems that must operate reliably in uncertain environments. A brief review of probability theory and real analysis of deterministic functions sets the stage for understanding random processes, whilst the underlying measure theoretic notions are explained in an intuitive, straightforward style. Students will learn to manage the complexity of randomness through the use of simple classes of random processes, statistical means and correlations, asymptotic analysis, sampling, and effective algorithms. Key topics covered include: • Calculus of random processes in linear systems • Kalman and Wiener filtering • Hidden Markov models for statistical inference • The estimation maximization (EM) algorithm • An introduction to martingales and concentration inequalities. Understanding of the key concepts is reinforced through over 100 worked examples and 300 thoroughly tested homework problems (half of which are solved in detail at the end of the book).







Random Processes for Engineers


Book Description

This book offers an intuitive approach to random processes and educates the reader on how to interpret and predict their behavior. Premised on the idea that new techniques are best introduced by specific, low-dimensional examples, the mathematical exposition is easier to comprehend and more enjoyable, and it motivates the subsequent generalizations. It distinguishes between the science of extracting statistical information from raw data--e.g., a time series about which nothing is known a priori--and that of analyzing specific statistical models, such as Bernoulli trials, Poisson queues, ARMA, and Markov processes. The former motivates the concepts of statistical spectral analysis (such as the Wiener-Khintchine theory), and the latter applies and interprets them in specific physical contexts. The formidable Kalman filter is introduced in a simple scalar context, where its basic strategy is transparent, and gradually extended to the full-blown iterative matrix form.




Random Matrices, Random Processes and Integrable Systems


Book Description

This book explores the remarkable connections between two domains that, a priori, seem unrelated: Random matrices (together with associated random processes) and integrable systems. The relations between random matrix models and the theory of classical integrable systems have long been studied. These appear mainly in the deformation theory, when parameters characterizing the measures or the domain of localization of the eigenvalues are varied. The resulting differential equations determining the partition function and correlation functions are, remarkably, of the same type as certain equations appearing in the theory of integrable systems. They may be analyzed effectively through methods based upon the Riemann-Hilbert problem of analytic function theory and by related approaches to the study of nonlinear asymptotics in the large N limit. Associated with studies of matrix models are certain stochastic processes, the "Dyson processes", and their continuum diffusion limits, which govern the spectrum in random matrix ensembles, and may also be studied by related methods. Random Matrices, Random Processes and Integrable Systems provides an in-depth examination of random matrices with applications over a vast variety of domains, including multivariate statistics, random growth models, and many others. Leaders in the field apply the theory of integrable systems to the solution of fundamental problems in random systems and processes using an interdisciplinary approach that sheds new light on a dynamic topic of current research.




Correlated Random Systems: Five Different Methods


Book Description

This volume presents five different methods recently developed to tackle the large scale behavior of highly correlated random systems, such as spin glasses, random polymers, local times and loop soups and random matrices. These methods, presented in a series of lectures delivered within the Jean-Morlet initiative (Spring 2013), play a fundamental role in the current development of probability theory and statistical mechanics. The lectures were: Random Polymers by E. Bolthausen, Spontaneous Replica Symmetry Breaking and Interpolation Methods by F. Guerra, Derrida's Random Energy Models by N. Kistler, Isomorphism Theorems by J. Rosen and Spectral Properties of Wigner Matrices by B. Schlein. This book is the first in a co-edition between the Jean-Morlet Chair at CIRM and the Springer Lecture Notes in Mathematics which aims to collect together courses and lectures on cutting-edge subjects given during the term of the Jean-Morlet Chair, as well as new material produced in its wake. It is targeted at researchers, in particular PhD students and postdocs, working in probability theory and statistical physics.







Random Walks, Random Fields, and Disordered Systems


Book Description

Focusing on the mathematics that lies at the intersection of probability theory, statistical physics, combinatorics and computer science, this volume collects together lecture notes on recent developments in the area. The common ground of these subjects is perhaps best described by the three terms in the title: Random Walks, Random Fields and Disordered Systems. The specific topics covered include a study of Branching Brownian Motion from the perspective of disordered (spin-glass) systems, a detailed analysis of weakly self-avoiding random walks in four spatial dimensions via methods of field theory and the renormalization group, a study of phase transitions in disordered discrete structures using a rigorous version of the cavity method, a survey of recent work on interacting polymers in the ballisticity regime and, finally, a treatise on two-dimensional loop-soup models and their connection to conformally invariant systems and the Gaussian Free Field. The notes are aimed at early graduate students with a modest background in probability and mathematical physics, although they could also be enjoyed by seasoned researchers interested in learning about recent advances in the above fields.