Modeling the Constraint Effects on Fracture Toughness of Materials


Book Description

"Cleavage fracture has been a very important subject for engineers for a long time because of the catastrophic result it may cause. The experimental results of cleavage fracture exhibit a large amount of scatter and show significant constraint effect, which motivated the development of statistical and micromechanics based methods in order to deal with such problem. The Weibull stress model, which is based on the weakest link statistics, uses two parameters, m and [sigma]u?, to describe the inherent distribution of the micro-scale cracks once the plastic deformation has occurred and to define the relationship between the macro and micro-scale driving forces for cleavage fracture. In this paper we examine constraint effects on cleavage fracture toughness numerically using a constraint function g(M) derived from the Weibull stress model. The non-dimensional function g(M) describes the evolution of constraint loss effects on fracture toughness relative to reference plane-strain small scale yielding (SSY) condition (T-stress=0). We performed detailed finite element analyses of single-edge notched bending speciments and compute g(M) functions for them. The g-function varies with parameters of the Weibull stress model, material flow properties and speciment geometry but not with absolute specimen size. Knowing the g-function one can construct fracture driving force curves for each absolute size of interest."--Abstract.




Constraint Effects in Fracture


Book Description

Papers presented at the symposium on [title] held in Indianapolis, Indiana, May 1991, provide a framework for quantifying constraint effects in terms of both continuum mechanics and micro-mechanical modeling approaches. Such a framework is useful in establishing accurate predictions of the fracture







3-D Constraint Effects on Models for Transferability of Cleavage Fracture Toughness


Book Description

Since the late 1980s there has been renewed interest and progress in understanding the effects of constraint on transgranular cleavage in ferritic steels. Research efforts to characterize the complex interaction of crack tip separation processes with geometry, loading mode and material flow properties proceed along essentially two major lines of investigation: (1) multi-parameter descriptions of stationary crack-tip fields under large-scale yielding conditions, and (2) rational micromechanics models for the description of cleavage fracture which also reflect the observed scatter in the ductile-to-brittle transition (DBT) region. This article reviews the essential features of a specific example representing each approach: the J-Q extension to correlative fracture mechanics and a local approach based on the Weibull stress. Discussions focus on the growing body of 3-D numerical solutions for common fracture specimens which, in certain cases, prove significantly different from long-established plane-strain results.




Numerical Modeling of Ductile Tearing Effects on Cleavage Fracture Toughness


Book Description

Experimental studies demonstrate a significant effect of specimen size, a/W ratio and prior ductile tearing on cleavage fracture toughness values (J[sub c]) measured in the ductile-to-brittle transition region of ferritic materials. In the lower-transition region, cleavage fracture often occurs under conditions of large-scale yielding but without prior ductile crack extension. The increased toughness develops when plastic zones formed at the crack tip interact with nearby specimen surfaces which relaxes crack-tip constraint (stress triaxiality). In the mid-to-upper transition region, small amounts of ductile crack extension (often







The Fracture of Brittle Materials


Book Description

Provides a modern, practical approach to the understanding and measurement procedures relevant to the fracture of brittle materials This book examines the testing and analysis of the fracture of brittle materials. Expanding on the measurement and analysis methodology contained in the first edition, it covers the relevant measurements (toughness and strength), material types, fracture mechanics, measurement techniques, reliability and lifetime predictions, microstructural considerations, and material/test selection processes appropriate for the analysis of the fracture behavior of brittle materials. The Fracture of Brittle Materials: Testing and Analysis, Second Edition summarizes the concepts behind the selection of a test procedure for fracture toughness and strength, and goes into detail on how the statistics of fracture can be used to assure reliability. It explains the importance of the role of microstructure in these determinations and emphasizes the use of fractographic analysis as an important tool in understanding why a part failed. The new edition includes a significant quantity of material related to the fracture of biomaterials, and features two new chapters—one on thermal shock, the other on the modeling of the fracture process. It also expands on a discussion of how to treat the statistics of fracture strength data to ensure reliability. Provides practical analysis of fracture toughness and strength Introduces the engineering and materials student to the basic concepts necessary for analyzing brittle fracture Contains new statistical analysis procedures to allow for the prediction of the safe design of brittle components Contains real-world examples to assist the reader in applying the concepts to their own research, material development, and quality-control needs The Fracture of Brittle Materials: Testing and Analysis, Second Edition is an important resource for all students, technicians, engineers, scientists, and researchers involved in the study, analysis, creation, or testing of ceramics.




Simulation Modeling


Book Description

The book presents some recent specialized works of a theoretical and practical nature in the field of simulation modeling, which is being addressed to a large number of specialists, mathematicians, doctors, engineers, economists, professors, and students. The book comprises 11 chapters that promote modern mathematical algorithms and simulation modeling techniques, in practical applications, in the following thematic areas: mathematics, biomedicine, systems of systems, materials science and engineering, energy systems, and economics. This project presents scientific papers and applications that emphasize the capabilities of simulation modeling methods, helping readers to understand the phenomena that take place in the real world, the conditions of their development, and their effects, at a high scientific and technical level. The authors have published work examples and case studies that resulted from their researches in the field. The readers get new solutions and answers to questions related to the emerging applications of simulation modeling and their advantages.




Patterns and Perspectives in Applied Fracture Mechanics


Book Description

This lecture begins with a overview of applied fracture mechanics pertinent to safety of pressure vessels. It then progresses to a chronological panorama of experimental and analytical results. To be useful and dependable in safety analysis of real structures, new analysis developments must be physically realistic, which means that they must accurately describe physical cause and effect. Consequently, before mathematical modeling can begin, cause and effect must be established from experimental data. This can be difficult and time consuming, but worth the effort. Accordingly, the theme of this paper is that the search for patterns is constant and vital. This theme is illustrated by the development of small, single-specimen, fracture toughness testing techniques. It is also illustrated by the development, based on two different published large-strain, elastic-plastic, three-dimensional finite-element analyses, of a hypothesis concerning three-dimensional loss of constraint. When a generalization of Irwin's thickness-normalized plastic-zone parameter, reaches a value close to 2[pi], the through-thickness contraction strain at the apex of the near-tip logarithmic-spiral slip-line region becomes the dominant negative strain accommodating crack opening. Because slip lines passing from the midplane to the stress-free side surfaces do not have to curve, once these slip lines are established, stresses near the crack tip are only elevated by strain hardening and constraint becomes significantly relaxed. This hypothesis, based on published three-dimensional elastic-plastic analyses, provides a potentially valuable means for gaining additional insight into constraint effects on fracture toughness by considering the roles played by the plastic strains as well as the stresses that develop near a crack tip.