Modelling Feedback Processes, Star Formation and Outflows in High-redshift Galaxies


Book Description

In the Universe, we observe galaxies forming no, or almost no, stars anymore, but astrophysicists do not know yet what physical mechanisms cause their “death”. To give clues to solve the problem, I studied feedback processes from stars and active supermassive black holes, star formation and galactic outflows. Chapter 1 presents all the notions to understand the problem: the characteristics of typical galaxies in the local and distant Universe, galactic outflows, galaxy death, active supermassive black holes, stars, and their feedback processes. In Chapter 2, I describe the numerical techniques I used: the simulation code RAMSES, and the radiative transfer code Cloudy, which I used to develop a computation method to get the ionization state of an entire galaxy. This method is presented in Chapter 3. Chapter 4 studies the coupling between the feedback processes of active supermassive black holes and stars, with the POGO project, Physical Origins of Galactic Outflows. During this thesis, I showed that typical active supermassive black hole cannot suddenly kill their host, even when stellar feedback processes are accounted for, and that their coupling either reduces or enhances the mass outflow rate depending on the mass of the host. In Chapter 5, I give a state-of-the-art about active supermassive black holes before and during my thesis, sum up the conclusions of the work, and give perspectives to enlarge the scope of the study, especially regarding the additional role of cosmic rays in the death of galaxies.




Galaxies at High Redshift


Book Description

This volume presents lectures of the XI Canary Islands Winter School of Astrophysics written by experts in the field.




Comparing Cosmological Hydrodynamic Simulations with Observations of High-Redshift Galaxy Formation


Book Description

We use cosmological hydrodynamic simulations to study the impact ofoutflows and radiative feedback on high-redshift galaxies. For outflows, we consider simulations that assume (i) no winds, (ii) a c̀̀onstant-wind"model in which the mass-loading factor and outflow speed areconstant, and (iii) m̀̀omentum-driven" winds in which both parametersvary smoothly with mass. In order to treat radiative feedback, wedevelop a moment-based radiative transfer technique that operates inboth post-processing and coupled radiative hydrodynamic modes. We first ask how outflows impact the broadband spectral energydistributions (SEDs) of six observed reionization-epoch galaxies. Simulations reproduce five regardless of the outflow prescription, while the sixth suggests an unusually bursty star formation history. We conclude that (i) simulations broadly account for available constraintson reionization-epoch galaxies, (ii) individual SEDs do not constrainoutflows, and (iii) SED comparisons efficiently isolate objects thatchallenge simulations. We next study how outflows impact the galaxy mass metallicity relation(MZR). Momentum-driven outflows uniquely reproduce observations at z=2. In this scenario, galaxies obey two equilibria: (i) The rate at which agalaxy processes gas into stars and outflows tracks its inflow rate; and(ii) The gas enrichment rate owing to star formation balances the dilutionrate owing to inflows. Combining these conditions indicates that the MZRis dominated by the (instantaneous) variation of outflows with mass, withmore-massive galaxies driving less gas into outflows per unit stellar massformed. Turning to radiative feedback, we use post-processing simulations to studythe topology of reionization. Reionization begins in overdensities andthen l̀̀eaks" directly into voids, with filaments reionizing last owing totheir high density and low emissivity. This result conflicts withprevious findings that voids ionize last. We argue that it owes to theuniqely-biased emissivity field produced by our star formation prescriptions, which have previously been shown to reproduce numerous post-reionizationconstraints. Finally, preliminary results from coupled radiative hydrodynamicsimulations indicate that reionization suppresses the star formation ratedensity by at most 10--20% by z=5. This is much less than previousestimates, which we attribute to our unique reionization topology althoughconfirmation will have to await more detailed modeling.




Star Formation in Galaxy Evolution: Connecting Numerical Models to Reality


Book Description

This book contains the elaborated and updated versions of the 24 lectures given at the 43rd Saas-Fee Advanced Course. Written by four eminent scientists in the field, the book reviews the physical processes related to star formation, starting from cosmological down to galactic scales. It presents a detailed description of the interstellar medium and its link with the star formation. And it describes the main numerical computational techniques designed to solve the equations governing self-gravitating fluids used for modelling of galactic and extra-galactic systems. This book provides a unique framework which is needed to develop and improve the simulation techniques designed for understanding the formation and evolution of galaxies. Presented in an accessible manner it contains the present day state of knowledge of the field. It serves as an entry point and key reference to students and researchers in astronomy, cosmology, and physics.




Gas Accretion onto Galaxies


Book Description

This edited volume presents the current state of gas accretion studies from both observational and theoretical perspectives, and charts our progress towards answering the fundamental yet elusive question of how galaxies get their gas. Understanding how galaxies form and evolve has been a central focus in astronomy for over a century. These studies have accelerated in the new millennium, driven by two key advances: the establishment of a firm concordance cosmological model that provides the backbone on which galaxies form and grow, and the recognition that galaxies grow not in isolation but within a “cosmic ecosystem” that includes the vast reservoir of gas filling intergalactic space. This latter aspect in which galaxies continually exchange matter with the intergalactic medium via inflows and outflows has been dubbed the “baryon cycle”. The topic of this book is directly related to the baryon cycle, in particular its least well constrained aspect, namely gas accretion. Accretion is a rare area of astrophysics in which the basic theoretical predictions are established, but the observations have been as yet unable to verify the expectations. Accretion has long been seen around the Milky Way in so-called High Velocity Clouds, but detecting accretion even around nearby galaxies has proved challenging; its multi-phase nature requires sensitive observations across the electromagnetic spectrum for full characterization. A promising approach involves looking for kinematic signatures, but accretion signatures are often confused with internal motions within galaxies. Accretion studies therefore touch a wide range of astrophysical processes, and hence a wide cross-section of the astronomical community. As observational facilities are finally able to access the wavelength ranges and depths at which accretion processes may be manifest, the time is right to survey these multiple lines of investigation and determine the state of the field in accretion studies of the baryon cycle.




Pre-supernova Stellar Feedback


Book Description

Galaxy formation and evolution are driven by stars and star formation. Star formation is fundamental for shaping the universe as we see it today as part of the cosmic ecosystems encompassing galaxies, yet half of the physics that determines how much gas forms into stars – the stellar feedback (injection of energy and momentum to the surrounding material) half of the tug-of-war between gravity and stellar feedback – have only recently become a focus for observational astronomers. Theoretical explorations of stellar feedback have been extensive for the past four decades and our current understanding of star-forming galaxies comes primarily through extensive modeling and simulations with sub-grid physics prescriptions based on a handful of observations. In order to secure the basis for these sub-grid physics models and expand our understanding of star-formation and the effects of massive stars during all epochs of the universe, more observations of these processes are needed. Observations of star forming regions provide the foundation to anchor simulations and observations of analogues to high-redshift galaxies help determine the sources that reionized the universe and the role stars played in during the Epoch of Reionization. With multiwavelength observations of H ii regions in the Milky Way, I have probed the effects of stellar feedback in dynamics of H ii regions, providing the necessary basis for defining the sub-grid physics in simulations. With multiwavelength observations of nearby galaxies with properties similar to galaxies in the EoR (low mass: 107 M⊙; low metallicity:




Star-Formation Rates of Galaxies


Book Description

Star-formation is one of the key processes that shape the current state and evolution of galaxies. This volume provides a comprehensive presentation of the different methods used to measure the intensity of recent or on-going star-forming activity in galaxies, discussing their advantages and complications in detail. It includes a thorough overview of the theoretical underpinnings of star-formation rate indicators, including topics such as stellar evolution and stellar spectra, the stellar initial mass function, and the physical conditions in the interstellar medium. The authors bring together in one place detailed and comparative discussions of traditional and new star-formation rate indicators, star-formation rate measurements in different spatial scales, and comparisons of star-formation rate indicators probing different stellar populations, along with the corresponding theoretical background. This is a useful reference for students and researchers working in the field of extragalactic astrophysics and studying star-formation in local and higher-redshift galaxies.




Exploring the Universe with the IUE Satellite


Book Description

This book was conceived to commemorate the continuing success of the guest observer program for the International Ultraviolet Explorer (IUE) satellite observatory. It is also hoped that this volume will serve as a useful tutorial for those pursuing research in related fields with future space observatories. As the IUE has been the product of the three-way collaboration between the U.S. National Aeronautics and Space Administration (NASA), European Space Agency (ESA) and the British Engineering and Research Council (SERC), so is this book the fruit of the collaboration of the American and European participants in the IUE. As such, it is a testimony to timely international cooperation and sharing of resources that open up new possibilities. The IUE spacecraft was launched on the 26th of January in 1978 into a geosynchronous orbit over the Atlantic Ocean. The scientific operations of the IUE are performed for 16 hours a day from Goddard Space Flight Center in Greenbelt, Maryland, U.S.A, and for 8 hours a day from ESA Villafranca Satellite Tracking Station near Madrid, Spain.







Galaxy Formation and Mergers with Stars and Massive Black Holes


Book Description

While mounting observational evidence suggests the coevolution of galaxies and their embedded massive black holes (MBHs), a comprehensive astrophysical understanding which incorporates both galaxies and MBHs has been missing. To tackle the nonlinear processes of galaxy formation, we develop a state-of-the-art numerical framework which self-consistently models the interplay between galactic components: dark matter, gas, stars, and MBHs. Utilizing this physically motivated tool, we present an investigation of a massive star-forming galaxy hosting a slowly growing MBH in a cosmological LCDM simulation. The MBH feedback heats the surrounding gas and locally suppresses star formation in the galactic inner core. In simulations of merging galaxies, the high-resolution adaptive mesh allows us to observe widespread starbursts via shock-induced star formation, and the interplay between the galaxies and their embedding medium. Fast growing MBHs in merging galaxies drive more frequent and powerful jets creating sizable bubbles at the galactic centers. We conclude that the interaction between the interstellar gas, stars and MBHs is critical in understanding the star formation history, black hole accretion history, and cosmological evolution of galaxies. Expanding upon our extensive experience in galactic simulations, we are well poised to apply this tool to other challenging, yet highly rewarding tasks in contemporary astrophysics, such as high-redshift quasar formation.