Modelling High-level Cognitive Processes


Book Description

This book is a practical guide to building computational models of high-level cognitive processes and systems. High-level processes are those central cognitive processes involved in thinking, reasoning, planning, and so on. These processes appear to share representational and processing requirements, and it is for this reason that they are considered together in this text. The book is divided into three parts. Part I considers foundational and background issues. Part II provides a series of case studies spanning a range of cognitive domains. Part III reflects upon issues raised by the case studies. Teachers of cognitive modeling may use material from Part I to structure lectures and practical sessions, with chapters in Part II forming the basis of in-depth student projects. All models discussed in this book are developed within the COGENT environments. COGENT provides a graphical interface in which models may be sketched as "box and arrow" diagrams and is both a useful teaching tool and a productive research tool. As such, this book is designed to be of use to both students of cognitive modeling and active researchers. For students, the book provides essential background material plus an extensive set of example models, exercises and project material. Researchers of both symbolic and connectionist persuasions will find the book of interest for its approach to cognitive modeling, which emphasizes methodological issues. They will also find that the COGENT environment itself has much to offer.




Modelling High-level Cognitive Processes


Book Description

This book is a practical guide to building computational models of high-level cognitive processes and systems. High-level processes are those central cognitive processes involved in thinking, reasoning, planning, and so on. These processes appear to share representational and processing requirements, and it is for this reason that they are considered together in this text. The book is divided into three parts. Part I considers foundational and background issues. Part II provides a series of case studies spanning a range of cognitive domains. Part III reflects upon issues raised by the case studies. Teachers of cognitive modeling may use material from Part I to structure lectures and practical sessions, with chapters in Part II forming the basis of in-depth student projects. All models discussed in this book are developed within the COGENT environments. COGENT provides a graphical interface in which models may be sketched as "box and arrow" diagrams and is both a useful teaching tool and a productive research tool. As such, this book is designed to be of use to both students of cognitive modeling and active researchers. For students, the book provides essential background material plus an extensive set of example models, exercises and project material. Researchers of both symbolic and connectionist persuasions will find the book of interest for its approach to cognitive modeling, which emphasizes methodological issues. They will also find that the COGENT environment itself has much to offer.




Network-Oriented Modeling


Book Description

This book presents a new approach that can be applied to complex, integrated individual and social human processes. It provides an alternative means of addressing complexity, better suited for its purpose than and effectively complementing traditional strategies involving isolation and separation assumptions. Network-oriented modeling allows high-level cognitive, affective and social models in the form of (cyclic) graphs to be constructed, which can be automatically transformed into executable simulation models. The modeling format used makes it easy to take into account theories and findings about complex cognitive and social processes, which often involve dynamics based on interrelating cycles. Accordingly, it makes it possible to address complex phenomena such as the integration of emotions within cognitive processes of all kinds, of internal simulations of the mental processes of others, and of social phenomena such as shared understandings and collective actions. A variety of sample models – including those for ownership of actions, fear and dreaming, the integration of emotions in joint decision-making based on empathic understanding, and evolving social networks – illustrate the potential of the approach. Dedicated software is available to support building models in a conceptual or graphical manner, transforming them into an executable format and performing simulation experiments. The majority of the material presented has been used and positively evaluated by undergraduate and graduate students and researchers in the cognitive, social and AI domains. Given its detailed coverage, the book is ideally suited as an introduction for graduate and undergraduate students in many different multidisciplinary fields involving cognitive, affective, social, biological, and neuroscience domains.




The Cambridge Handbook of Computational Psychology


Book Description

A cutting-edge reference source for the interdisciplinary field of computational cognitive modeling.




Modelling High-level Cognitive Processes


Book Description

This book is a practical guide to building computational models of high-level cognitive processes and systems. High-level processes are those central cognitive processes involved in thinking, reasoning, planning, and so on. These processes appear to share representational and processing requirements, and it is for this reason that they are considered together in this text. The book is divided into three parts. Part I considers foundational and background issues. Part II provides a series of case studies spanning a range of cognitive domains. Part III reflects upon issues raised by the case studies. Teachers of cognitive modeling may use material from Part I to structure lectures and practical sessions, with chapters in Part II forming the basis of in-depth student projects. All models discussed in this book are developed within the COGENT environments. COGENT provides a graphical interface in which models may be sketched as "box and arrow" diagrams and is both a useful teaching tool and a productive research tool. As such, this book is designed to be of use to both students of cognitive modeling and active researchers. For students, the book provides essential background material plus an extensive set of example models, exercises and project material. Researchers of both symbolic and connectionist persuasions will find the book of interest for its approach to cognitive modeling, which emphasizes methodological issues. They will also find that the COGENT environment itself has much to offer.




The Oxford Handbook of Thinking and Reasoning


Book Description

The Oxford Handbook of Thinking and Reasoning brings together the contributions of many of the leading researchers in thinking and reasoning to create the most comprehensive overview of research on thinking and reasoning that has ever been available. Each chapter includes a bit of historical perspective on the topic, and concludes with some thoughts about where the field seems to be heading.




Neural Network Perspectives on Cognition and Adaptive Robotics


Book Description

Featuring an international team of authors, Neural Network Perspectives on Cognition and Adaptive Robotics presents several approaches to the modeling of human cognition and language using neural computing techniques. It also describes how adaptive robotic systems can be produced using neural network architectures. Covering a wide range of mainstream area and trends, each chapter provides the latest information from a different perspective.




Integrated Models of Cognitive Systems


Book Description

The field of cognitive modeling has progressed beyond modeling cognition in the context of simple laboratory tasks and begun to attack the problem of modeling it in more complex, realistic environments, such as those studied by researchers in the field of human factors. The problems that the cognitive modeling community is tackling focus on modeling certain problems of communication and control that arise when integrating with the external environment factors such as implicit and explicit knowledge, emotion, cognition, and the cognitive system. These problems must be solved in order to produce integrated cognitive models of moderately complex tasks. Architectures of cognition in these tasks focus on the control of a central system, which includes control of the central processor itself, initiation of functional processes, such as visual search and memory retrieval, and harvesting the results of these functional processes. Because the control of the central system is conceptually different from the internal control required by individual functional processes, a complete architecture of cognition must incorporate two types of theories of control: Type 1 theories of the structure, functionality, and operation of the controller, and type 2 theories of the internal control of functional processes, including how and what they communicate to the controller. This book presents the current state of the art for both types of theories, as well as contrasts among current approaches to human-performance models. It will be an important resource for professional and student researchers in cognitive science, cognitive-engineering, and human-factors.Contributors: Kevin A. Gluck, Jerry T. Ball, Michael A. Krusmark, Richard W. Pew, Chris R. Sims, Vladislav D. Veksler, John R. Anderson, Ron Sun, Nicholas L. Cassimatis, Randy J. Brou, Andrew D. Egerton, Stephanie M. Doane, Christopher W. Myers, Hansjorg Neth, Jeremy M Wolfe, Marc Pomplun, Ronald A. Rensink, Hansjorg Neth, Chris R. Sims, Peter M. Todd, Lael J. Schooler, Wai-Tat Fu, Michael C. Mozer, Sachiko Kinoshita, Michael Shettel, Alex Kirlik, Vladislav D. Veksler, Michael J. Schoelles, Jerome R. Busemeyer, Eric Dimperio, Ryan K. Jessup, Jonathan Gratch, Stacy Marsella, Glenn Gunzelmann, Kevin A. Gluck, Scott Price, Hans P. A. Van Dongen, David F. Dinges, Frank E. Ritter, Andrew L. Reifers, Laura Cousino Klein, Michael J. Schoelles, Eva Hudlicka, Hansjorg Neth, Christopher W. Myers, Dana Ballard, Nathan Sprague, Laurence T. Maloney, Julia Trommershauser, Michael S. Landy, A. Hornof, Michael J. Schoelles, David Kieras, Dario D. Salvucci, Niels Taatgen, Erik M. Altmann, Richard A. Carlson, Andrew Howes, Richard L. Lewis, Alonso Vera, Richard P. Cooper, and Michael D. Byrne




The Routledge International Handbook of Creative Cognition


Book Description

The Routledge International Handbook of Creative Cognition is an authoritative reference work that offers a well-balanced overview of current scholarship across the full breadth of the rapidly expanding field of creative cognition. It contains 43 chapters written by world-leading researchers, covering foundational issues and concepts as well as state-of-the-art research developments. The handbook draws extensively on contemporary work exploring the cognitive representations and processes associated with creativity, whether studied in the laboratory or as it arises in real-world practice in domains such as education, art, science, entrepreneurship, design, and technological innovation. Chapters also examine the sociocognitive and cultural aspects of creativity in teams and organisations, while additionally capturing the latest research on the cognitive neuroscience of creativity. Providing a compelling synopsis of emerging trends and debates in the field of creative cognition and positioning these in relation to established findings and theories, this text provides a clear sense of the way in which new research is challenging traditional viewpoints. It is an essential reading for researchers in the field of creative cognition as well as advanced students wishing to learn more about the latest developments in this important and rapidly growing area of enquiry.




Model-Based Reasoning in Scientific Discovery


Book Description

The volume is based on the papers that were presented at the Interna tional Conference Model-Based Reasoning in Scientific Discovery (MBR'98), held at the Collegio Ghislieri, University of Pavia, Pavia, Italy, in December 1998. The papers explore how scientific thinking uses models and explanatory reasoning to produce creative changes in theories and concepts. The study of diagnostic, visual, spatial, analogical, and temporal rea soning has demonstrated that there are many ways of performing intelligent and creative reasoning that cannot be described with the help only of tradi tional notions of reasoning such as classical logic. Traditional accounts of scientific reasoning have restricted the notion of reasoning primarily to de ductive and inductive arguments. Understanding the contribution of model ing practices to discovery and conceptual change in science requires ex panding scientific reasoning to include complex forms of creative reasoning that are not always successful and can lead to incorrect solutions. The study of these heuristic ways of reasoning is situated at the crossroads of philoso phy, artificial intelligence, cognitive psychology, and logic; that is, at the heart of cognitive science. There are several key ingredients common to the various forms of model based reasoning to be considered in this book. The models are intended as in terpretations of target physical systems, processes, phenomena, or situations. The models are retrieved or constructed on the basis of potentially satisfying salient constraints of the target domain.